Spaces:
Sleeping
Sleeping
File size: 9,182 Bytes
fd63a18 d14e266 fd63a18 d14e266 fd63a18 52f8f2b e774b65 fd63a18 d14e266 52f8f2b ae2d652 fd63a18 bd87e2e fd63a18 e774b65 fd63a18 bd87e2e fd63a18 bd87e2e fd63a18 bd87e2e fd63a18 d14e266 e774b65 fd63a18 d14e266 fd63a18 5a26166 4bfabee fd63a18 e774b65 fd63a18 e774b65 fd63a18 e774b65 fd63a18 d14e266 fd63a18 d14e266 fd63a18 d14e266 fd63a18 d14e266 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 |
import json
import torch
from huggingnft.lightweight_gan.train import timestamped_filename
from streamlit_option_menu import option_menu
from huggingface_hub import hf_hub_download, file_download
from PIL import Image
from huggingface_hub.hf_api import HfApi
import streamlit as st
from huggingnft.lightweight_gan.lightweight_gan import Generator, LightweightGAN, evaluate_in_chunks, Trainer
from accelerate import Accelerator
from huggan.pytorch.cyclegan.modeling_cyclegan import GeneratorResNet
from torchvision import transforms as T
from torchvision.transforms import Compose, Resize, ToTensor, Normalize, RandomCrop, RandomHorizontalFlip
from torchvision.utils import make_grid
hfapi = HfApi()
model_names = [model.modelId[model.modelId.index("/") + 1:] for model in hfapi.list_models(author="huggingnft")]
# streamlit-option-menu
# st.set_page_config(page_title="Sharone's Streamlit App Gallery", page_icon="", layout="wide")
# sysmenu = '''
# <style>
# #MainMenu {visibility:hidden;}
# footer {visibility:hidden;}
# '''
# st.markdown(sysmenu,unsafe_allow_html=True)
# # Add a logo (optional) in the sidebar
# logo = Image.open(r'C:\Users\13525\Desktop\Insights_Bees_logo.png')
# profile = Image.open(r'C:\Users\13525\Desktop\medium_profile.png')
ABOUT_TEXT = "🤗 Hugging NFT - Generate NFT by OpenSea collection name."
CONTACT_TEXT = "Here is some contact info"
GENERATE_IMAGE_TEXT = "Text about generation"
INTERPOLATION_TEXT = "Text about Interpolation"
COLLECTION2COLLECTION_TEXT = "Text about Collection2Collection"
STOPWORDS = ["-old"]
COLLECTION2COLLECTION_KEYS = ["__2__"]
def load_lightweight_model(model_name):
file_path = file_download.hf_hub_download(
repo_id=model_name,
filename="config.json"
)
config = json.loads(open(file_path).read())
organization_name, name = model_name.split("/")
model = Trainer(**config, organization_name=organization_name, name=name)
model.load(use_cpu=True)
model.accelerator = Accelerator()
return model
def clean_models(model_names, stopwords):
cleaned_model_names = []
for model_name in model_names:
clear = True
for stopword in stopwords:
if stopword in model_name:
clear = False
break
if clear:
cleaned_model_names.append(model_name)
return cleaned_model_names
def get_concat_h(im1, im2):
dst = Image.new('RGB', (im1.width + im2.width, im1.height))
dst.paste(im1, (0, 0))
dst.paste(im2, (im1.width, 0))
return dst
model_names = clean_models(model_names, STOPWORDS)
with st.sidebar:
choose = option_menu("Hugging NFT",
["About", "Generate image", "Interpolation", "Collection2Collection", "Contact"],
icons=['house', 'camera fill', 'bi bi-youtube', 'book', 'person lines fill'],
menu_icon="app-indicator", default_index=0,
styles={
# "container": {"padding": "5!important", "background-color": "#fafafa", },
"container": {"border-radius": ".0rem"},
# "icon": {"color": "orange", "font-size": "25px"},
# "nav-link": {"font-size": "16px", "text-align": "left", "margin": "0px",
# "--hover-color": "#eee"},
# "nav-link-selected": {"background-color": "#02ab21"},
}
)
st.sidebar.markdown(
"""
<style>
.aligncenter {
text-align: center;
}
</style>
<p style='text-align: center'>
<a href="https://github.com/AlekseyKorshuk/huggingnft" target="_blank">Project Repository</a>
</p>
<p class="aligncenter">
<a href="https://github.com/AlekseyKorshuk/huggingnft" target="_blank">
<img src="https://img.shields.io/github/stars/AlekseyKorshuk/huggingnft?style=social"/>
</a>
</p>
<p class="aligncenter">
<a href="https://twitter.com/alekseykorshuk" target="_blank">
<img src="https://img.shields.io/twitter/follow/alekseykorshuk?style=social"/>
</a>
</p>
""",
unsafe_allow_html=True,
)
if choose == "About":
st.title(choose)
st.markdown(ABOUT_TEXT)
if choose == "Contact":
st.title(choose)
st.markdown(CONTACT_TEXT)
if choose == "Generate image":
st.title(choose)
st.markdown(GENERATE_IMAGE_TEXT)
model_name = st.selectbox(
'Choose model:',
clean_models(model_names, COLLECTION2COLLECTION_KEYS)
)
generation_type = st.selectbox(
'Select generation type:',
["default", "ema"]
)
nrows = st.number_input("Number of rows:",
min_value=1,
max_value=10,
step=1,
value=8,
)
generate_image_button = st.button("Generate")
if generate_image_button:
with st.spinner(text=f"Downloading selected model..."):
model = load_lightweight_model(f"huggingnft/{model_name}")
with st.spinner(text=f"Generating..."):
st.image(
model.generate_app(
num=timestamped_filename(),
nrow=nrows,
checkpoint=-1,
types=generation_type
)[0]
)
if choose == "Interpolation":
st.title(choose)
st.markdown(INTERPOLATION_TEXT)
model_name = st.selectbox(
'Choose model:',
clean_models(model_names, COLLECTION2COLLECTION_KEYS)
)
nrows = st.number_input("Number of rows:",
min_value=1,
max_value=10,
step=1,
value=1,
)
num_steps = st.number_input("Number of steps:",
min_value=1,
max_value=1000,
step=1,
value=100,
)
generate_image_button = st.button("Generate")
if generate_image_button:
with st.spinner(text=f"Downloading selected model..."):
model = load_lightweight_model(f"huggingnft/{model_name}")
my_bar = st.progress(0)
result = model.generate_interpolation(
num=timestamped_filename(),
num_image_tiles=nrows,
num_steps=num_steps,
save_frames=False,
progress_bar=my_bar
)
my_bar.empty()
with st.spinner(text=f"Uploading result..."):
st.image(result)
if choose == "Collection2Collection":
st.title(choose)
st.markdown(COLLECTION2COLLECTION_TEXT)
model_name = st.selectbox(
'Choose model:',
set(model_names) - set(clean_models(model_names, COLLECTION2COLLECTION_KEYS))
)
nrows = st.number_input("Number of images to generate:",
min_value=1,
max_value=10,
step=1,
value=1,
)
generate_image_button = st.button("Generate")
if generate_image_button:
n_channels = 3
image_size = 256
input_shape = (image_size, image_size)
transform = Compose([
T.ToPILImage(),
T.Resize(input_shape),
ToTensor(),
Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
])
# generator = modeling_dcgan.Generator.from_pretrained("huggingnft/cryptopunks")
with st.spinner(text=f"Downloading selected model..."):
translator = GeneratorResNet.from_pretrained(f'huggingnft/{model_name}',
input_shape=(n_channels, image_size, image_size),
num_residual_blocks=9)
z = torch.randn(nrows, 100, 1, 1)
with st.spinner(text=f"Downloading selected model..."):
model = load_lightweight_model(f"huggingnft/{model_name.split('__2__')[0]}")
with st.spinner(text=f"Generating input images..."):
punks = model.generate_app(
num=timestamped_filename(),
nrow=4,
checkpoint=-1,
types="default"
)[1]
pipe_transform = T.Resize((256, 256))
input = pipe_transform(punks)
with st.spinner(text=f"Generating output images..."):
output = translator(input)
out_img = make_grid(output,
nrow=4, normalize=True)
# out_img = make_grid(punks,
# nrow=8, normalize=True)
out_transform = Compose([
T.ToPILImage()
])
results = []
for out_punk, out_ape in zip(input, output):
results.append(
get_concat_h(out_transform(make_grid(out_punk, nrow=1, normalize=True)), out_transform(make_grid(out_ape, nrow=1, normalize=True)))
)
for result in results:
st.image(result)
|