File size: 11,308 Bytes
fd63a18
d14e266
 
 
fd63a18
 
 
 
d14e266
fd63a18
52f8f2b
e774b65
fd63a18
 
d14e266
 
 
 
5f49372
52f8f2b
ae2d652
fd63a18
bd87e2e
fd63a18
5f49372
e774b65
fd63a18
 
 
 
 
 
bd87e2e
fd63a18
 
 
bd87e2e
fd63a18
753dbfb
 
 
 
 
 
832bd72
7fc50ed
832bd72
 
753dbfb
 
 
 
 
84b05af
 
 
bd87e2e
25fefd6
58e468b
fd63a18
d14e266
e774b65
 
fd63a18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d14e266
 
 
 
 
fd63a18
 
 
 
 
 
 
 
5a26166
 
 
 
 
 
 
4bfabee
fd63a18
e774b65
 
 
 
 
 
 
 
fd63a18
e774b65
 
 
 
 
 
 
 
 
 
 
832bd72
 
 
 
 
 
 
e774b65
 
 
 
fd63a18
5f49372
a068333
5f49372
d30fc08
fd63a18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e774b65
fd63a18
 
 
 
 
 
 
 
 
 
 
 
 
58e468b
fd63a18
 
 
 
d14e266
58e468b
 
 
fd63a18
 
 
 
 
 
 
 
 
 
 
 
5550266
fd63a18
 
 
 
 
 
5550266
fd63a18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
58e468b
 
 
 
fd63a18
 
 
d14e266
fd63a18
 
 
 
 
d14e266
 
 
 
 
 
fd63a18
 
 
d14e266
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b05b268
d14e266
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
58e468b
d14e266
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
import json

import torch

from huggingnft.lightweight_gan.train import timestamped_filename
from streamlit_option_menu import option_menu

from huggingface_hub import hf_hub_download, file_download
from PIL import Image

from huggingface_hub.hf_api import HfApi
import streamlit as st
from huggingnft.lightweight_gan.lightweight_gan import Generator, LightweightGAN, evaluate_in_chunks, Trainer
from accelerate import Accelerator
from huggan.pytorch.cyclegan.modeling_cyclegan import GeneratorResNet
from torchvision import transforms as T
from torchvision.transforms import Compose, Resize, ToTensor, Normalize, RandomCrop, RandomHorizontalFlip
from torchvision.utils import make_grid
import requests

hfapi = HfApi()
model_names = [model.modelId[model.modelId.index("/") + 1:] for model in hfapi.list_models(author="huggingnft")]

# streamlit-option-menu
# st.set_page_config(page_title="Streamlit App Gallery", page_icon="", layout="wide")

# sysmenu = '''
# <style>
# #MainMenu {visibility:hidden;}
# footer {visibility:hidden;}
# '''
# st.markdown(sysmenu,unsafe_allow_html=True)

# # Add a logo (optional) in the sidebar
# logo = Image.open(r'C:\Users\13525\Desktop\Insights_Bees_logo.png')
# profile = Image.open(r'C:\Users\13525\Desktop\medium_profile.png')

ABOUT_TEXT = "🤗 Hugging NFT - Generate NFT by OpenSea collection name."
CONTACT_TEXT = """
_Built by Aleksey Korshuk, Christian Cancedda and Hugging Face community with love_ ❤️ 

[![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk)
[![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk)

[![Follow](https://img.shields.io/github/followers/Chris1nexus?style=social)](https://github.com/Chris1nexus)
[![Follow](https://img.shields.io/twitter/follow/chris_cancedda?style=social)](https://twitter.com/intent/follow?screen_name=chris_cancedda)


Star project repository:

[![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingnft?style=social)](https://github.com/AlekseyKorshuk/huggingnft)

"""
GENERATE_IMAGE_TEXT = "Generate NFT by selecting existing model based on OpenSea collection. You can create new model or imporve existing in few clicks — check [project repository](https://github.com/AlekseyKorshuk/huggingnft)."
INTERPOLATION_TEXT = "Generate interpolation between two NFTs by selecting existing model based on OpenSea collection. You can create new model or imporve existing in few clicks — check [project repository](https://github.com/AlekseyKorshuk/huggingnft)."
COLLECTION2COLLECTION_TEXT = "Generate first NFT with existing model and transform it to another collection by selecting existing model based on OpenSea collections. You can create new model or imporve existing in few clicks — check [project repository](https://github.com/AlekseyKorshuk/huggingnft)."

TRAIN_TEXT = "> If you think that the results of the model are not good enough and they can be improved, you can train the model more in a few clicks. If you notice that the model is overtrained, then you can easily return to the best version. Check [project repository](https://github.com/AlekseyKorshuk/huggingnft) to know more about that."

STOPWORDS = ["-old"]
COLLECTION2COLLECTION_KEYS = ["__2__"]


def load_lightweight_model(model_name):
    file_path = file_download.hf_hub_download(
        repo_id=model_name,
        filename="config.json"
    )
    config = json.loads(open(file_path).read())
    organization_name, name = model_name.split("/")
    model = Trainer(**config, organization_name=organization_name, name=name)
    model.load(use_cpu=True)
    model.accelerator = Accelerator()
    return model


def clean_models(model_names, stopwords):
    cleaned_model_names = []
    for model_name in model_names:
        clear = True
        for stopword in stopwords:
            if stopword in model_name:
                clear = False
                break
        if clear:
            cleaned_model_names.append(model_name)
    return cleaned_model_names

def get_concat_h(im1, im2):
    dst = Image.new('RGB', (im1.width + im2.width, im1.height))
    dst.paste(im1, (0, 0))
    dst.paste(im2, (im1.width, 0))
    return dst

model_names = clean_models(model_names, STOPWORDS)

with st.sidebar:
    choose = option_menu("Hugging NFT",
                         ["About", "Generate image", "Interpolation", "Collection2Collection", "Contact"],
                         icons=['house', 'camera fill', 'bi bi-youtube', 'book', 'person lines fill'],
                         menu_icon="app-indicator", default_index=0,
                         styles={
                             # "container": {"padding": "5!important", "background-color": "#fafafa", },
                             "container": {"border-radius": ".0rem"},
                             # "icon": {"color": "orange", "font-size": "25px"},
                             # "nav-link": {"font-size": "16px", "text-align": "left", "margin": "0px",
                             #              "--hover-color": "#eee"},
                             # "nav-link-selected": {"background-color": "#02ab21"},
                         }
                         )
st.sidebar.markdown(
    """
<style>
.aligncenter {
    text-align: center;
}
</style>
<p style='text-align: center'>
<a href="https://github.com/AlekseyKorshuk/huggingnft" target="_blank">Project Repository</a>
</p>
<p class="aligncenter">
    <a href="https://github.com/AlekseyKorshuk/huggingnft" target="_blank"> 
        <img src="https://img.shields.io/github/stars/AlekseyKorshuk/huggingnft?style=social"/>
    </a>
</p>
<p class="aligncenter">
    <a href="https://twitter.com/alekseykorshuk" target="_blank"> 
        <img src="https://img.shields.io/twitter/follow/alekseykorshuk?style=social"/>
    </a>
</p>

<p class="aligncenter">
    <a href="https://twitter.com/chris_cancedda" target="_blank"> 
        <img src="https://img.shields.io/twitter/follow/chris_cancedda?style=social"/>
    </a>
</p>

    """,
    unsafe_allow_html=True,
)

if choose == "About":
    README = requests.get("https://raw.githubusercontent.com/AlekseyKorshuk/huggingnft/main/README.md").text
    README = str(README).replace('width="1200"','width="700"')
    # st.title(choose)
    st.markdown(README, unsafe_allow_html=True)

if choose == "Contact":
    st.title(choose)
    st.markdown(CONTACT_TEXT)

if choose == "Generate image":
    st.title(choose)
    st.markdown(GENERATE_IMAGE_TEXT)

    model_name = st.selectbox(
        'Choose model:',
        clean_models(model_names, COLLECTION2COLLECTION_KEYS)
    )
    generation_type = st.selectbox(
        'Select generation type:',
        ["default", "ema"]
    )

    nrows = st.number_input("Number of rows:",
                            min_value=1,
                            max_value=10,
                            step=1,
                            value=8,
                            )
    generate_image_button = st.button("Generate")

    if generate_image_button:
        with st.spinner(text=f"Downloading selected model..."):
            model = load_lightweight_model(f"huggingnft/{model_name}")
        with st.spinner(text=f"Generating..."):
            image = model.generate_app(
                    num=timestamped_filename(),
                    nrow=nrows,
                    checkpoint=-1,
                    types=generation_type
                )[0]
        st.markdown(TRAIN_TEXT)
        st.image(
                image
            )

if choose == "Interpolation":
    st.title(choose)
    st.markdown(INTERPOLATION_TEXT)

    model_name = st.selectbox(
        'Choose model:',
        clean_models(model_names, COLLECTION2COLLECTION_KEYS)
    )
    nrows = st.number_input("Number of rows:",
                            min_value=1,
                            max_value=4,
                            step=1,
                            value=1,
                            )

    num_steps = st.number_input("Number of steps:",
                                min_value=1,
                                max_value=200,
                                step=1,
                                value=100,
                                )
    generate_image_button = st.button("Generate")

    if generate_image_button:
        with st.spinner(text=f"Downloading selected model..."):
            model = load_lightweight_model(f"huggingnft/{model_name}")
        my_bar = st.progress(0)
        result = model.generate_interpolation(
            num=timestamped_filename(),
            num_image_tiles=nrows,
            num_steps=num_steps,
            save_frames=False,
            progress_bar=my_bar
        )
        my_bar.empty()
        st.markdown(TRAIN_TEXT)
        st.image(
                result
            )

if choose == "Collection2Collection":
    st.title(choose)
    st.markdown(COLLECTION2COLLECTION_TEXT)

    model_name = st.selectbox(
        'Choose model:',
        set(model_names) - set(clean_models(model_names, COLLECTION2COLLECTION_KEYS))
    )
    nrows = st.number_input("Number of images to generate:",
                            min_value=1,
                            max_value=10,
                            step=1,
                            value=1,
                            )
    generate_image_button = st.button("Generate")

    if generate_image_button:
        n_channels = 3

        image_size = 256

        input_shape = (image_size, image_size)

        transform = Compose([
            T.ToPILImage(),
            T.Resize(input_shape),
            ToTensor(),
            Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
        ])

        with st.spinner(text=f"Downloading selected model..."):
            translator = GeneratorResNet.from_pretrained(f'huggingnft/{model_name}',
                                                         input_shape=(n_channels, image_size, image_size),
                                                         num_residual_blocks=9)

        z = torch.randn(nrows, 100, 1, 1)

        with st.spinner(text=f"Downloading selected model..."):
            model = load_lightweight_model(f"huggingnft/{model_name.split('__2__')[0]}")

        with st.spinner(text=f"Generating input images..."):
            punks = model.generate_app(
                num=timestamped_filename(),
                nrow=nrows,
                checkpoint=-1,
                types="default"
            )[1]

        pipe_transform = T.Resize((256, 256))

        input = pipe_transform(punks)

        with st.spinner(text=f"Generating output images..."):
            output = translator(input)

        out_img = make_grid(output,
                            nrow=4, normalize=True)

        # out_img = make_grid(punks,
        # nrow=8, normalize=True)

        out_transform = Compose([
            T.ToPILImage()
        ])

        results = []

        for out_punk, out_ape in zip(input, output):
            results.append(
                get_concat_h(out_transform(make_grid(out_punk, nrow=1, normalize=True)), out_transform(make_grid(out_ape, nrow=1, normalize=True)))
            )
        st.markdown(TRAIN_TEXT)
        for result in results:
            st.image(result)