|
import gradio as gr |
|
import torch |
|
import numpy as np |
|
from diffusers import DiffusionPipeline |
|
from transformers import pipeline |
|
|
|
pipe = pipeline('text-generation', model='daspartho/prompt-extend') |
|
|
|
def extend_prompt(prompt): |
|
return pipe(prompt+',', num_return_sequences=1)[0]["generated_text"] |
|
|
|
def text_it(inputs): |
|
return extend_prompt(inputs) |
|
|
|
|
|
def load_pipeline(use_cuda): |
|
device = "cuda" if use_cuda and torch.cuda.is_available() else "cpu" |
|
|
|
if device == "cuda": |
|
torch.cuda.max_memory_allocated(device=device) |
|
torch.cuda.empty_cache() |
|
pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16", use_safetensors=True) |
|
pipe.enable_xformers_memory_efficient_attention() |
|
pipe = pipe.to(device) |
|
torch.cuda.empty_cache() |
|
else: |
|
pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", use_safetensors=True) |
|
pipe = pipe.to(device) |
|
|
|
return pipe |
|
|
|
def genie(prompt="sexy woman", use_details=True,steps=2, seed=398231747038484200, use_cuda=False): |
|
pipe = load_pipeline(use_cuda) |
|
generator = np.random.seed(0) if seed == 0 else torch.manual_seed(seed) |
|
if use_details: |
|
extended_prompt = extend_prompt(prompt) |
|
else: |
|
extended_prompt=prompt |
|
int_image = pipe(prompt=extended_prompt, generator=generator, num_inference_steps=steps, guidance_scale=0.0).images[0] |
|
return int_image, extended_prompt |
|
|
|
|
|
|
|
html_code = ''' |
|
<style> |
|
body { |
|
background-color: #F0F0F0; |
|
} |
|
</style> |
|
<h1 style="color:black; text-align:center;">Stable Diffusion Turbo with GPT</h1> |
|
''' |
|
|
|
with gr.Blocks() as myface: |
|
gr.HTML(html_code) |
|
|
|
with gr.Row(): |
|
input_text = gr.Textbox(label='Text prompt.', lines=1) |
|
|
|
with gr.Row(): |
|
details_checkbox = gr.Checkbox(label="details", info="Generate Details?") |
|
steps_slider = gr.Slider(1, maximum=5, value=2, step=1, label='Number of Iterations') |
|
seed_slider = gr.Slider(minimum=0, step=1, maximum=999999999999999999, randomize=False, value=398231747038484200) |
|
cuda_checkbox = gr.Checkbox(label="cuda", info="Do you have cuda?") |
|
with gr.Row(): |
|
generate_button = gr.Button("Generate") |
|
with gr.Row(): |
|
output_image1 = gr.Image() |
|
output_image2 = gr.Image() |
|
with gr.Row(): |
|
output_text1 = gr.Textbox(label="Generated Text", lines=2) |
|
output_text2 = gr.Textbox(label="Generated Text", lines=2) |
|
|
|
with gr.Row(): |
|
output_image3 = gr.Image() |
|
output_image4 = gr.Image() |
|
with gr.Row(): |
|
output_text3 = gr.Textbox(label="Generated Text", lines=2) |
|
output_text4 = gr.Textbox(label="Generated Text", lines=2) |
|
|
|
generate_button.click(genie, inputs=[input_text, details_checkbox, steps_slider, seed_slider, cuda_checkbox], outputs=[output_image1, output_text1], concurrency_limit=10) |
|
generate_button.click(genie, inputs=[input_text, details_checkbox, steps_slider, seed_slider, cuda_checkbox], outputs=[output_image2, output_text2], concurrency_limit=10) |
|
generate_button.click(genie, inputs=[input_text, details_checkbox, steps_slider, seed_slider, cuda_checkbox], outputs=[output_image3, output_text3], concurrency_limit=10) |
|
generate_button.click(genie, inputs=[input_text, details_checkbox, steps_slider, seed_slider, cuda_checkbox], outputs=[output_image4, output_text4], concurrency_limit=10) |
|
myface.launch(inline=True, show_api=False, max_threads=200) |
|
|