JustinLin610's picture
first commit
ee21b96
|
raw
history blame
2.43 kB

Simultaneous Machine Translation

This directory contains the code for the paper Monotonic Multihead Attention

Prepare Data

Please follow the instructions to download and preprocess the WMT'15 En-De dataset.

Another example of training an English to Japanese model can be found here

Training

  • MMA-IL
fairseq-train \
    data-bin/wmt15_en_de_32k \
    --simul-type infinite_lookback \
    --user-dir $FAIRSEQ/example/simultaneous_translation \
    --mass-preservation \
    --criterion latency_augmented_label_smoothed_cross_entropy \
    --latency-weight-avg  0.1 \
    --max-update 50000 \
    --arch transformer_monotonic_iwslt_de_en save_dir_key=lambda \
    --optimizer adam --adam-betas '(0.9, 0.98)' \
    --lr-scheduler 'inverse_sqrt' \
    --warmup-init-lr 1e-7  --warmup-updates 4000 \
    --lr 5e-4 --stop-min-lr 1e-9 --clip-norm 0.0 --weight-decay 0.0001\
    --dropout 0.3 \
    --label-smoothing 0.1\
    --max-tokens 3584
  • MMA-H
fairseq-train \
    data-bin/wmt15_en_de_32k \
    --simul-type hard_aligned \
    --user-dir $FAIRSEQ/example/simultaneous_translation \
    --mass-preservation \
    --criterion latency_augmented_label_smoothed_cross_entropy \
    --latency-weight-var  0.1 \
    --max-update 50000 \
    --arch transformer_monotonic_iwslt_de_en save_dir_key=lambda \
    --optimizer adam --adam-betas '(0.9, 0.98)' \
    --lr-scheduler 'inverse_sqrt' \
    --warmup-init-lr 1e-7  --warmup-updates 4000 \
    --lr 5e-4 --stop-min-lr 1e-9 --clip-norm 0.0 --weight-decay 0.0001\
    --dropout 0.3 \
    --label-smoothing 0.1\
    --max-tokens 3584
  • wait-k
fairseq-train \
    data-bin/wmt15_en_de_32k \
    --simul-type wait-k \
    --waitk-lagging 3 \
    --user-dir $FAIRSEQ/example/simultaneous_translation \
    --mass-preservation \
    --criterion latency_augmented_label_smoothed_cross_entropy \
    --max-update 50000 \
    --arch transformer_monotonic_iwslt_de_en save_dir_key=lambda \
    --optimizer adam --adam-betas '(0.9, 0.98)' \
    --lr-scheduler 'inverse_sqrt' \
    --warmup-init-lr 1e-7  --warmup-updates 4000 \
    --lr 5e-4 --stop-min-lr 1e-9 --clip-norm 0.0 --weight-decay 0.0001\
    --dropout 0.3 \
    --label-smoothing 0.1\
    --max-tokens 3584