Spaces:
Runtime error
Runtime error
Common Voice
Common Voice is a public domain speech corpus with 11.2K hours of read speech in 76 languages (the latest version 7.0). We provide examples for building Transformer models on this dataset.
Data preparation
Download and unpack Common Voice v4 to a path ${DATA_ROOT}/${LANG_ID}
.
Create splits and generate audio manifests with
python -m examples.speech_synthesis.preprocessing.get_common_voice_audio_manifest \
--data-root ${DATA_ROOT} \
--lang ${LANG_ID} \
--output-manifest-root ${AUDIO_MANIFEST_ROOT} --convert-to-wav
Then, extract log-Mel spectrograms, generate feature manifest and create data configuration YAML with
python -m examples.speech_synthesis.preprocessing.get_feature_manifest \
--audio-manifest-root ${AUDIO_MANIFEST_ROOT} \
--output-root ${FEATURE_MANIFEST_ROOT} \
--ipa-vocab --lang ${LANG_ID}
where we use phoneme inputs (--ipa-vocab
) as example.
To denoise audio and trim leading/trailing silence using signal processing based VAD, run
for SPLIT in dev test train; do
python -m examples.speech_synthesis.preprocessing.denoise_and_vad_audio \
--audio-manifest ${AUDIO_MANIFEST_ROOT}/${SPLIT}.audio.tsv \
--output-dir ${PROCESSED_DATA_ROOT} \
--denoise --vad --vad-agg-level 2
done
Training
(Please refer to the LJSpeech example.)
Inference
(Please refer to the LJSpeech example.)
Automatic Evaluation
(Please refer to the LJSpeech example.)
Results
Language | Speakers | --arch | Params | Test MCD | Model |
---|---|---|---|---|---|
English | 200 | tts_transformer | 54M | 3.8 | Download |