JustinLin610
update
10b0761
|
raw
history blame
10.2 kB

[Back]

S2T Example: Speech Translation (ST) on Multilingual TEDx

Multilingual TEDx is multilingual corpus for speech recognition and speech translation. The data is derived from TEDx talks in 8 source languages with translations to a subset of 5 target languages.

Data Preparation

Download and unpack Multilingual TEDx data to a path ${MTEDX_ROOT}/${LANG_PAIR}, then preprocess it with

# additional Python packages for S2T data processing/model training
pip install pandas torchaudio soundfile sentencepiece

# Generate TSV manifests, features, vocabulary
# and configuration for each language
python examples/speech_to_text/prep_mtedx_data.py \
  --data-root ${MTEDX_ROOT} --task asr \
  --vocab-type unigram --vocab-size 1000
python examples/speech_to_text/prep_mtedx_data.py \
  --data-root ${MTEDX_ROOT} --task st \
  --vocab-type unigram --vocab-size 1000

# Add vocabulary and configuration for joint data
# (based on the manifests and features generated above)
python examples/speech_to_text/prep_mtedx_data.py \
  --data-root ${MTEDX_ROOT} --task asr --joint \
  --vocab-type unigram --vocab-size 8000
python examples/speech_to_text/prep_mtedx_data.py \
  --data-root ${MTEDX_ROOT} --task st --joint \
  --vocab-type unigram --vocab-size 8000

The generated files (manifest, features, vocabulary and data configuration) will be added to ${MTEDX_ROOT}/${LANG_PAIR} (per-language data) and MTEDX_ROOT (joint data).

ASR

Training

Spanish as example:

fairseq-train ${MTEDX_ROOT}/es-es \
    --config-yaml config_asr.yaml --train-subset train_asr --valid-subset valid_asr \
    --save-dir ${ASR_SAVE_DIR} --num-workers 4 --max-tokens 40000 --max-epoch 200 \
    --task speech_to_text --criterion label_smoothed_cross_entropy --report-accuracy \
    --arch s2t_transformer_xs --optimizer adam --lr 2e-3 --lr-scheduler inverse_sqrt \
    --warmup-updates 10000 --clip-norm 10.0 --seed 1 --dropout 0.3 --label-smoothing 0.1 \
    --load-pretrained-encoder-from ${PRETRAINED_ENCODER} \
    --skip-invalid-size-inputs-valid-test \
    --keep-last-epochs 10 --update-freq 8 --patience 10

For joint model (using ASR data from all 8 languages):

fairseq-train ${MTEDX_ROOT} \
    --config-yaml config_asr.yaml \
    --train-subset train_es-es_asr,train_fr-fr_asr,train_pt-pt_asr,train_it-it_asr,train_ru-ru_asr,train_el-el_asr,train_ar-ar_asr,train_de-de_asr \
    --valid-subset valid_es-es_asr,valid_fr-fr_asr,valid_pt-pt_asr,valid_it-it_asr,valid_ru-ru_asr,valid_el-el_asr,valid_ar-ar_asr,valid_de-de_asr \
    --save-dir ${MULTILINGUAL_ASR_SAVE_DIR} --num-workers 4 --max-tokens 40000 --max-epoch 200 \
    --task speech_to_text --criterion label_smoothed_cross_entropy --report-accuracy \
    --arch s2t_transformer_s --optimizer adam --lr 2e-3 --lr-scheduler inverse_sqrt \
    --warmup-updates 10000 --clip-norm 10.0 --seed 1 --dropout 0.3 --label-smoothing 0.1 \
    --skip-invalid-size-inputs-valid-test \
    --keep-last-epochs 10 --update-freq 8 --patience 10 \
    --ignore-prefix-size 1

where MULTILINGUAL_ASR_SAVE_DIR is the checkpoint root path. We set --update-freq 8 to simulate 8 GPUs with 1 GPU. You may want to update it accordingly when using more than 1 GPU. For multilingual models, we prepend target language ID token as target BOS, which should be excluded from the training loss via --ignore-prefix-size 1.

Inference & Evaluation

CHECKPOINT_FILENAME=avg_last_10_checkpoint.pt
python scripts/average_checkpoints.py \
  --inputs ${ASR_SAVE_DIR} --num-epoch-checkpoints 10 \
  --output "${ASR_SAVE_DIR}/${CHECKPOINT_FILENAME}"

fairseq-generate ${MTEDX_ROOT}/es-es \
  --config-yaml config_asr.yaml --gen-subset test --task speech_to_text \
  --path ${ASR_SAVE_DIR}/${CHECKPOINT_FILENAME} --max-tokens 50000 --beam 5 \
  --skip-invalid-size-inputs-valid-test \
  --scoring wer --wer-tokenizer 13a --wer-lowercase --wer-remove-punct --remove-bpe

# For models trained on joint data
CHECKPOINT_FILENAME=avg_last_10_checkpoint.pt
python scripts/average_checkpoints.py \
  --inputs ${MULTILINGUAL_ASR_SAVE_DIR} --num-epoch-checkpoints 10 \
  --output "${MULTILINGUAL_ASR_SAVE_DIR}/${CHECKPOINT_FILENAME}"

for LANG in es fr pt it ru el ar de; do
  fairseq-generate ${MTEDX_ROOT} \
    --config-yaml config_asr.yaml --gen-subset test_${LANG}-${LANG}_asr --task speech_to_text \
    --prefix-size 1 --path ${MULTILINGUAL_ASR_SAVE_DIR}/${CHECKPOINT_FILENAME} \
    --max-tokens 40000 --beam 5 \
    --skip-invalid-size-inputs-valid-test \
    --scoring wer --wer-tokenizer 13a --wer-lowercase --wer-remove-punct --remove-bpe
done

Results

Data --arch Params Es Fr Pt It Ru El Ar De
Monolingual s2t_transformer_xs 10M 46.4 45.6 54.8 48.0 74.7 109.5 104.4 111.1

ST

Training

Es-En as example:

fairseq-train ${MTEDX_ROOT}/es-en \
    --config-yaml config_st.yaml --train-subset train_st --valid-subset valid_st \
    --save-dir ${ST_SAVE_DIR} --num-workers 4 --max-tokens 40000 --max-epoch 200 \
    --task speech_to_text --criterion label_smoothed_cross_entropy --report-accuracy \
    --arch s2t_transformer_xs --optimizer adam --lr 2e-3 --lr-scheduler inverse_sqrt \
    --warmup-updates 10000 --clip-norm 10.0 --seed 1 --dropout 0.3 --label-smoothing 0.1 \
    --load-pretrained-encoder-from ${PRETRAINED_ENCODER} \
    --skip-invalid-size-inputs-valid-test \
    --keep-last-epochs 10 --update-freq 8 --patience 10

For multilingual model (all 12 directions):

fairseq-train ${MTEDX_ROOT} \
    --config-yaml config_st.yaml \
    --train-subset train_el-en_st,train_es-en_st,train_es-fr_st,train_es-it_st,train_es-pt_st,train_fr-en_st,train_fr-es_st,train_fr-pt_st,train_it-en_st,train_it-es_st,train_pt-en_st,train_pt-es_st,train_ru-en_st \
    --valid-subset valid_el-en_st,valid_es-en_st,valid_es-fr_st,valid_es-it_st,valid_es-pt_st,valid_fr-en_st,valid_fr-es_st,valid_fr-pt_st,valid_it-en_st,valid_it-es_st,valid_pt-en_st,valid_pt-es_st,valid_ru-en_st \
    --save-dir ${MULTILINGUAL_ST_SAVE_DIR} --num-workers 4 --max-tokens 40000 --max-epoch 200 \
    --task speech_to_text --criterion label_smoothed_cross_entropy --report-accuracy \
    --arch s2t_transformer_s --optimizer adam --lr 2e-3 --lr-scheduler inverse_sqrt \
    --warmup-updates 10000 --clip-norm 10.0 --seed 1 --dropout 0.3 --label-smoothing 0.1 \
    --skip-invalid-size-inputs-valid-test \
    --keep-last-epochs 10 --update-freq 8 --patience 10 \
    --ignore-prefix-size 1 \
    --load-pretrained-encoder-from ${PRETRAINED_ENCODER}

where ST_SAVE_DIR (MULTILINGUAL_ST_SAVE_DIR) is the checkpoint root path. The ST encoder is pre-trained by ASR for faster training and better performance: --load-pretrained-encoder-from <(JOINT_)ASR checkpoint path>. We set --update-freq 8 to simulate 8 GPUs with 1 GPU. You may want to update it accordingly when using more than 1 GPU. For multilingual models, we prepend target language ID token as target BOS, which should be excluded from the training loss via --ignore-prefix-size 1.

Inference & Evaluation

Average the last 10 checkpoints and evaluate on the test split:

CHECKPOINT_FILENAME=avg_last_10_checkpoint.pt
python scripts/average_checkpoints.py \
  --inputs ${ST_SAVE_DIR} --num-epoch-checkpoints 10 \
  --output "${ST_SAVE_DIR}/${CHECKPOINT_FILENAME}"

fairseq-generate ${MTEDX_ROOT}/es-en \
  --config-yaml config_st.yaml --gen-subset test --task speech_to_text \
  --path ${ST_SAVE_DIR}/${CHECKPOINT_FILENAME} \
  --max-tokens 50000 --beam 5 --scoring sacrebleu --remove-bpe

# For multilingual models
python scripts/average_checkpoints.py \
  --inputs ${MULTILINGUAL_ST_SAVE_DIR} --num-epoch-checkpoints 10 \
  --output "${MULTILINGUAL_ST_SAVE_DIR}/${CHECKPOINT_FILENAME}"

for LANGPAIR in es-en es-fr es-pt fr-en fr-es fr-pt pt-en pt-es it-en it-es ru-en el-en; do
  fairseq-generate ${MTEDX_ROOT} \
    --config-yaml config_st.yaml --gen-subset test_${LANGPAIR}_st --task speech_to_text \
    --prefix-size 1 --path ${MULTILINGUAL_ST_SAVE_DIR}/${CHECKPOINT_FILENAME} \
    --max-tokens 40000 --beam 5 \
    --skip-invalid-size-inputs-valid-test \
    --scoring sacrebleu --remove-bpe
done

For multilingual models, we force decoding from the target language ID token (as BOS) via --prefix-size 1.

Results

Data --arch Params Es-En Es-Pt Es-Fr Fr-En Fr-Es Fr-Pt Pt-En Pt-Es It-En It-Es Ru-En El-En
Bilingual s2t_transformer_xs 10M 7.0 12.2 1.7 8.9 10.6 7.9 8.1 8.7 6.4 1.0 0.7 0.6
Multilingual s2t_transformer_s 31M 12.3 17.4 6.1 12.0 13.6 13.2 12.0 13.7 10.7 13.1 0.6 0.8

Citation

Please cite as:

@misc{salesky2021mtedx,
      title={Multilingual TEDx Corpus for Speech Recognition and Translation},
      author={Elizabeth Salesky and Matthew Wiesner and Jacob Bremerman and Roldano Cattoni and Matteo Negri and Marco Turchi and Douglas W. Oard and Matt Post},
      year={2021},
}

@inproceedings{wang2020fairseqs2t,
  title = {fairseq S2T: Fast Speech-to-Text Modeling with fairseq},
  author = {Changhan Wang and Yun Tang and Xutai Ma and Anne Wu and Dmytro Okhonko and Juan Pino},
  booktitle = {Proceedings of the 2020 Conference of the Asian Chapter of the Association for Computational Linguistics (AACL): System Demonstrations},
  year = {2020},
}

@inproceedings{ott2019fairseq,
  title = {fairseq: A Fast, Extensible Toolkit for Sequence Modeling},
  author = {Myle Ott and Sergey Edunov and Alexei Baevski and Angela Fan and Sam Gross and Nathan Ng and David Grangier and Michael Auli},
  booktitle = {Proceedings of NAACL-HLT 2019: Demonstrations},
  year = {2019},
}

[Back]