Spaces:
Runtime error
Runtime error
# Simple and Effective Noisy Channel Modeling for Neural Machine Translation (Yee et al., 2019) | |
This page contains pointers to pre-trained models as well as instructions on how to run the reranking scripts. | |
## Citation: | |
```bibtex | |
@inproceedings{yee2019simple, | |
title = {Simple and Effective Noisy Channel Modeling for Neural Machine Translation}, | |
author = {Kyra Yee and Yann Dauphin and Michael Auli}, | |
booktitle = {Conference on Empirical Methods in Natural Language Processing}, | |
year = {2019}, | |
} | |
``` | |
## Pre-trained Models: | |
Model | Description | Download | |
---|---|--- | |
`transformer.noisychannel.de-en` | De->En Forward Model | [download (.tar.gz)](https://dl.fbaipublicfiles.com/fairseq/models/noisychannel/forward_de2en.tar.bz2) | |
`transformer.noisychannel.en-de` | En->De Channel Model | [download (.tar.gz)](https://dl.fbaipublicfiles.com/fairseq/models/noisychannel/backward_en2de.tar.bz2) | |
`transformer_lm.noisychannel.en` | En Language model | [download (.tar.gz)](https://dl.fbaipublicfiles.com/fairseq/models/noisychannel/reranking_en_lm.tar.bz2) | |
Test Data: [newstest_wmt17](https://dl.fbaipublicfiles.com/fairseq/models/noisychannel/wmt17test.tar.bz2) | |
## Example usage | |
``` | |
mkdir rerank_example | |
curl https://dl.fbaipublicfiles.com/fairseq/models/noisychannel/forward_de2en.tar.bz2 | tar xvjf - -C rerank_example | |
curl https://dl.fbaipublicfiles.com/fairseq/models/noisychannel/backward_en2de.tar.bz2 | tar xvjf - -C rerank_example | |
curl https://dl.fbaipublicfiles.com/fairseq/models/noisychannel/reranking_en_lm.tar.bz2 | tar xvjf - -C rerank_example | |
curl https://dl.fbaipublicfiles.com/fairseq/models/noisychannel/wmt17test.tar.bz2 | tar xvjf - -C rerank_example | |
beam=50 | |
num_trials=1000 | |
fw_name=fw_model_ex | |
bw_name=bw_model_ex | |
lm_name=lm_ex | |
data_dir=rerank_example/hyphen-splitting-mixed-case-wmt17test-wmt14bpe | |
data_dir_name=wmt17 | |
lm=rerank_example/lm/checkpoint_best.pt | |
lm_bpe_code=rerank_example/lm/bpe32k.code | |
lm_dict=rerank_example/lm/dict.txt | |
batch_size=32 | |
bw=rerank_example/backward_en2de.pt | |
fw=rerank_example/forward_de2en.pt | |
# reranking with P(T|S) P(S|T) and P(T) | |
python examples/noisychannel/rerank_tune.py $data_dir --tune-param lenpen weight1 weight3 \ | |
--lower-bound 0 0 0 --upper-bound 3 3 3 --data-dir-name $data_dir_name \ | |
--num-trials $num_trials --source-lang de --target-lang en --gen-model $fw \ | |
-n $beam --batch-size $batch_size --score-model2 $fw --score-model1 $bw \ | |
--backwards1 --weight2 1 \ | |
-lm $lm --lm-dict $lm_dict --lm-name en_newscrawl --lm-bpe-code $lm_bpe_code \ | |
--model2-name $fw_name --model1-name $bw_name --gen-model-name $fw_name | |
# reranking with P(T|S) and P(T) | |
python examples/noisychannel/rerank_tune.py $data_dir --tune-param lenpen weight3 \ | |
--lower-bound 0 0 --upper-bound 3 3 --data-dir-name $data_dir_name \ | |
--num-trials $num_trials --source-lang de --target-lang en --gen-model $fw \ | |
-n $beam --batch-size $batch_size --score-model1 $fw \ | |
-lm $lm --lm-dict $lm_dict --lm-name en_newscrawl --lm-bpe-code $lm_bpe_code \ | |
--model1-name $fw_name --gen-model-name $fw_name | |
# to run with a preconfigured set of hyperparameters for the lenpen and model weights, using rerank.py instead. | |
python examples/noisychannel/rerank.py $data_dir \ | |
--lenpen 0.269 --weight1 1 --weight2 0.929 --weight3 0.831 \ | |
--data-dir-name $data_dir_name --source-lang de --target-lang en --gen-model $fw \ | |
-n $beam --batch-size $batch_size --score-model2 $fw --score-model1 $bw --backwards1 \ | |
-lm $lm --lm-dict $lm_dict --lm-name en_newscrawl --lm-bpe-code $lm_bpe_code \ | |
--model2-name $fw_name --model1-name $bw_name --gen-model-name $fw_name | |
``` | |