Spaces:
Running
on
T4
Running
on
T4
File size: 33,043 Bytes
130d8b3 d2beadd f4ec98b d2beadd 327d072 d2beadd 2ffa822 130d8b3 d2beadd 2c1976e ac47a36 71d0d94 06d02f8 ed01548 06d02f8 ed01548 06d02f8 ed01548 06d02f8 1f529ba ed01548 1f529ba ed01548 1f529ba 6b8dbdd 1f529ba 2c1976e 1f529ba 2c1976e 1f529ba 71d0d94 ed01548 1f529ba 71d0d94 ed01548 2c1976e 1f529ba 945cc53 1f529ba 945cc53 1f529ba 2ffa822 1f529ba 945cc53 1f529ba 945cc53 1f529ba bd6d945 2ffa822 945cc53 1f529ba ed01548 945cc53 1f529ba 945cc53 1f529ba 945cc53 1f529ba ed01548 1f529ba 945cc53 1f529ba 2ffa822 1f529ba 945cc53 1f529ba 945cc53 1f529ba 945cc53 ed01548 945cc53 ed01548 945cc53 ed01548 945cc53 1f529ba ed01548 945cc53 2ffa822 945cc53 1f529ba 945cc53 1f529ba 945cc53 1f529ba ed01548 0b876ed 1f529ba 945cc53 1f529ba ed01548 ac47a36 1f529ba ac47a36 1f529ba ed01548 1f529ba 71d0d94 9b72cf5 71d0d94 1f529ba 9ab860d 1f529ba 36e014d ed01548 9b72cf5 71d0d94 ed01548 71d0d94 ed01548 71d0d94 36e014d ac47a36 6b8dbdd ed01548 162a025 1f529ba 9ab860d 6b8dbdd 1f529ba 9ab860d 1f529ba 6b8dbdd 1f529ba 9ab860d ed01548 6b8dbdd 1f529ba 36e014d ed01548 1f529ba 6b8dbdd 1f529ba ed01548 6b8dbdd 2ffa822 1f529ba ed01548 1f529ba 6b8dbdd ac47a36 8d81cbf 7026cb4 5b668f3 9ab860d ed01548 1156c85 9ab860d 3f7ccb2 1156c85 3f7ccb2 9ab860d 2c1976e 1f529ba 5a293f6 36e014d 9ab860d 9b72cf5 945cc53 9b72cf5 9ab860d 7026cb4 9ab860d 945cc53 7026cb4 945cc53 9ab860d 162a025 7026cb4 162a025 7026cb4 162a025 5a293f6 9ab860d 5a293f6 7026cb4 5a293f6 162a025 5a293f6 7026cb4 5a293f6 945cc53 5a293f6 71d0d94 9b72cf5 5a293f6 71d0d94 5a293f6 71d0d94 5a293f6 71d0d94 ed01548 71d0d94 ed01548 71d0d94 ed01548 71d0d94 5a293f6 9ab860d 5a293f6 71d0d94 5a293f6 0b876ed 5b668f3 0b876ed 5b668f3 0b876ed 4ceb342 5b668f3 0b876ed 5b668f3 0b876ed 5b668f3 0b876ed 5b668f3 e2c5318 5b668f3 0b876ed 5b668f3 0b876ed 7026cb4 5ac85c4 5a293f6 945cc53 71d0d94 5a293f6 2c1976e 1f529ba 9ab860d ac47a36 2c1976e 1f529ba df430c1 2c1976e 1f529ba ac47a36 71d0d94 ac47a36 ed01548 ac47a36 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 |
import os
import sys
import json
import argparse
import time
import io
import uuid
from PIL import Image
from typing import List, Dict, Any, Iterator
import gradio as gr
from gradio import ChatMessage
# Add the project root to the Python path
current_dir = os.path.dirname(os.path.abspath(__file__))
project_root = os.path.dirname(os.path.dirname(os.path.dirname(current_dir)))
sys.path.insert(0, project_root)
from octotools.models.initializer import Initializer
from octotools.models.planner import Planner
from octotools.models.memory import Memory
from octotools.models.executor import Executor
from octotools.models.utils import make_json_serializable
from pathlib import Path
from huggingface_hub import CommitScheduler
# Get Huggingface token from environment variable
HF_TOKEN = os.getenv("HUGGINGFACE_TOKEN")
########### Test Huggingface Dataset ###########
# Update the HuggingFace dataset constants
DATASET_DIR = Path("solver_cache") # the directory to save the dataset
DATASET_DIR.mkdir(parents=True, exist_ok=True)
global QUERY_ID
QUERY_ID = None
scheduler = CommitScheduler(
repo_id="lupantech/OctoTools-Gradio-Demo-User-Data",
repo_type="dataset",
folder_path=DATASET_DIR,
path_in_repo="solver_cache", # Update path in repo
token=HF_TOKEN
)
def save_query_data(query_id: str, query: str, image_path: str) -> None:
"""Save query data to Huggingface dataset"""
# Save query metadata
query_cache_dir = DATASET_DIR / query_id
query_cache_dir.mkdir(parents=True, exist_ok=True)
query_file = query_cache_dir / "query_metadata.json"
query_metadata = {
"query_id": query_id,
"query_text": query,
"datetime": time.strftime("%Y%m%d_%H%M%S"),
"image_path": image_path if image_path else None
}
print(f"Saving query metadata to {query_file}")
with query_file.open("w") as f:
json.dump(query_metadata, f, indent=4)
# # NOTE: As we are using the same name for the query cache directory as the dataset directory,
# # NOTE: we don't need to copy the content from the query cache directory to the query directory.
# # Copy all content from root_cache_dir to query_dir
# import shutil
# shutil.copytree(args.root_cache_dir, query_data_dir, dirs_exist_ok=True)
def save_feedback(query_id: str, feedback_type: str, feedback_text: str = None) -> None:
"""
Save user feedback to the query directory.
Args:
query_id: Unique identifier for the query
feedback_type: Type of feedback ('upvote', 'downvote', or 'comment')
feedback_text: Optional text feedback from user
"""
feedback_data_dir = DATASET_DIR / query_id
feedback_data_dir.mkdir(parents=True, exist_ok=True)
feedback_data = {
"query_id": query_id,
"feedback_type": feedback_type,
"feedback_text": feedback_text,
"datetime": time.strftime("%Y%m%d_%H%M%S")
}
# Save feedback in the query directory
feedback_file = feedback_data_dir / "feedback.json"
print(f"Saving feedback to {feedback_file}")
# If feedback file exists, update it
if feedback_file.exists():
with feedback_file.open("r") as f:
existing_feedback = json.load(f)
# Convert to list if it's a single feedback entry
if not isinstance(existing_feedback, list):
existing_feedback = [existing_feedback]
existing_feedback.append(feedback_data)
feedback_data = existing_feedback
# Write feedback data
with feedback_file.open("w") as f:
json.dump(feedback_data, f, indent=4)
def save_steps_data(query_id: str, memory: Memory) -> None:
"""Save steps data to Huggingface dataset"""
steps_file = DATASET_DIR / query_id / "all_steps.json"
memory_actions = memory.get_actions()
memory_actions = make_json_serializable(memory_actions) # NOTE: make the memory actions serializable
print("Memory actions: ", memory_actions)
with steps_file.open("w") as f:
json.dump(memory_actions, f, indent=4)
def save_module_data(query_id: str, key: str, value: Any) -> None:
"""Save module data to Huggingface dataset"""
try:
key = key.replace(" ", "_").lower()
module_file = DATASET_DIR / query_id / f"{key}.json"
value = make_json_serializable(value) # NOTE: make the value serializable
with module_file.open("a") as f:
json.dump(value, f, indent=4)
except Exception as e:
print(f"Warning: Failed to save as JSON: {e}")
# Fallback to saving as text file
text_file = DATASET_DIR / query_id / f"{key}.txt"
try:
with text_file.open("a") as f:
f.write(str(value) + "\n")
print(f"Successfully saved as text file: {text_file}")
except Exception as e:
print(f"Error: Failed to save as text file: {e}")
########### End of Test Huggingface Dataset ###########
class Solver:
def __init__(
self,
planner,
memory,
executor,
task: str,
task_description: str,
output_types: str = "base,final,direct",
index: int = 0,
verbose: bool = True,
max_steps: int = 10,
max_time: int = 60,
query_cache_dir: str = "solver_cache"
):
self.planner = planner
self.memory = memory
self.executor = executor
self.task = task
self.task_description = task_description
self.index = index
self.verbose = verbose
self.max_steps = max_steps
self.max_time = max_time
self.query_cache_dir = query_cache_dir
self.output_types = output_types.lower().split(',')
assert all(output_type in ["base", "final", "direct"] for output_type in self.output_types), "Invalid output type. Supported types are 'base', 'final', 'direct'."
def stream_solve_user_problem(self, user_query: str, user_image: Image.Image, api_key: str, messages: List[ChatMessage]) -> Iterator[List[ChatMessage]]:
"""
Streams intermediate thoughts and final responses for the problem-solving process based on user input.
Args:
user_query (str): The text query input from the user.
user_image (Image.Image): The uploaded image from the user (PIL Image object).
messages (list): A list of ChatMessage objects to store the streamed responses.
"""
if user_image:
# # Convert PIL Image to bytes (for processing)
# img_bytes_io = io.BytesIO()
# user_image.save(img_bytes_io, format="PNG") # Convert image to PNG bytes
# img_bytes = img_bytes_io.getvalue() # Get bytes
# Use image paths instead of bytes,
# os.makedirs(os.path.join(self.root_cache_dir, 'images'), exist_ok=True)
# img_path = os.path.join(self.root_cache_dir, 'images', str(uuid.uuid4()) + '.jpg')
img_path = os.path.join(self.query_cache_dir, 'query_image.jpg')
user_image.save(img_path)
else:
img_path = None
# Set tool cache directory
_tool_cache_dir = os.path.join(self.query_cache_dir, "tool_cache") # NOTE: This is the directory for tool cache
self.executor.set_query_cache_dir(_tool_cache_dir) # NOTE: set query cache directory
# Step 1: Display the received inputs
if user_image:
messages.append(ChatMessage(role="assistant", content=f"### π Received Query:\n{user_query}\n### πΌοΈ Image Uploaded"))
else:
messages.append(ChatMessage(role="assistant", content=f"### π Received Query:\n{user_query}"))
yield messages
# # Step 2: Add "thinking" status while processing
# messages.append(ChatMessage(
# role="assistant",
# content="",
# metadata={"title": "β³ Thinking: Processing input..."}
# ))
# [Step 3] Initialize problem-solving state
start_time = time.time()
step_count = 0
json_data = {"query": user_query, "image": "Image received as bytes"}
messages.append(ChatMessage(role="assistant", content="<br>"))
messages.append(ChatMessage(role="assistant", content="### π Reasoning Steps from OctoTools (Deep Thinking...)"))
yield messages
# [Step 4] Query Analysis
query_analysis = self.planner.analyze_query(user_query, img_path)
json_data["query_analysis"] = query_analysis
query_analysis = query_analysis.replace("Concise Summary:", "**Concise Summary:**\n")
query_analysis = query_analysis.replace("Required Skills:", "**Required Skills:**")
query_analysis = query_analysis.replace("Relevant Tools:", "**Relevant Tools:**")
query_analysis = query_analysis.replace("Additional Considerations:", "**Additional Considerations:**")
messages.append(ChatMessage(role="assistant",
content=f"{query_analysis}",
metadata={"title": "### π Step 0: Query Analysis"}))
yield messages
# Save the query analysis data
query_analysis_data = {
"query_analysis": query_analysis,
"time": round(time.time() - start_time, 5)
}
save_module_data(QUERY_ID, "step_0_query_analysis", query_analysis_data)
# Execution loop (similar to your step-by-step solver)
while step_count < self.max_steps and (time.time() - start_time) < self.max_time:
step_count += 1
messages.append(ChatMessage(role="OctoTools",
content=f"Generating the {step_count}-th step...",
metadata={"title": f"π Step {step_count}"}))
yield messages
# [Step 5] Generate the next step
next_step = self.planner.generate_next_step(
user_query, img_path, query_analysis, self.memory, step_count, self.max_steps
)
context, sub_goal, tool_name = self.planner.extract_context_subgoal_and_tool(next_step)
step_data = {
"step_count": step_count,
"context": context,
"sub_goal": sub_goal,
"tool_name": tool_name,
"time": round(time.time() - start_time, 5)
}
save_module_data(QUERY_ID, f"step_{step_count}_action_prediction", step_data)
# Display the step information
messages.append(ChatMessage(
role="assistant",
content=f"**Context:** {context}\n\n**Sub-goal:** {sub_goal}\n\n**Tool:** `{tool_name}`",
metadata={"title": f"### π― Step {step_count}: Action Prediction ({tool_name})"}))
yield messages
# Handle tool execution or errors
if tool_name not in self.planner.available_tools:
messages.append(ChatMessage(
role="assistant",
content=f"β οΈ Error: Tool '{tool_name}' is not available."))
yield messages
continue
# [Step 6-7] Generate and execute the tool command
tool_command = self.executor.generate_tool_command(
user_query, img_path, context, sub_goal, tool_name, self.planner.toolbox_metadata[tool_name]
)
analysis, explanation, command = self.executor.extract_explanation_and_command(tool_command)
result = self.executor.execute_tool_command(tool_name, command)
result = make_json_serializable(result)
# Display the ommand generation information
messages.append(ChatMessage(
role="assistant",
content=f"**Analysis:** {analysis}\n\n**Explanation:** {explanation}\n\n**Command:**\n```python\n{command}\n```",
metadata={"title": f"### π Step {step_count}: Command Generation ({tool_name})"}))
yield messages
# Save the command generation data
command_generation_data = {
"analysis": analysis,
"explanation": explanation,
"command": command,
"time": round(time.time() - start_time, 5)
}
save_module_data(QUERY_ID, f"step_{step_count}_command_generation", command_generation_data)
# Display the command execution result
messages.append(ChatMessage(
role="assistant",
content=f"**Result:**\n```json\n{json.dumps(result, indent=4)}\n```",
# content=f"**Result:**\n```json\n{result}\n```",
metadata={"title": f"### π οΈ Step {step_count}: Command Execution ({tool_name})"}))
yield messages
# Save the command execution data
command_execution_data = {
"result": result,
"time": round(time.time() - start_time, 5)
}
save_module_data(QUERY_ID, f"step_{step_count}_command_execution", command_execution_data)
# [Step 8] Memory update and stopping condition
self.memory.add_action(step_count, tool_name, sub_goal, tool_command, result)
stop_verification = self.planner.verificate_memory(user_query, img_path, query_analysis, self.memory)
conclusion = self.planner.extract_conclusion(stop_verification)
# Save the context verification data
context_verification_data = {
"stop_verification": stop_verification,
"conclusion": conclusion,
"time": round(time.time() - start_time, 5)
}
save_module_data(QUERY_ID, f"step_{step_count}_context_verification", context_verification_data)
# Display the context verification result
conclusion_emoji = "β
" if conclusion == 'STOP' else "π"
messages.append(ChatMessage(
role="assistant",
content=f"**Analysis:** {analysis}\n\n**Conclusion:** `{conclusion}` {conclusion_emoji}",
metadata={"title": f"### π€ Step {step_count}: Context Verification"}))
yield messages
if conclusion == 'STOP':
break
# Step 7: Generate Final Output (if needed)
if 'direct' in self.output_types:
messages.append(ChatMessage(role="assistant", content="<br>"))
direct_output = self.planner.generate_direct_output(user_query, img_path, self.memory)
messages.append(ChatMessage(role="assistant", content=f"### π Final Answer:\n{direct_output}"))
yield messages
# Save the direct output data
direct_output_data = {
"direct_output": direct_output,
"time": round(time.time() - start_time, 5)
}
save_module_data(QUERY_ID, "direct_output", direct_output_data)
if 'final' in self.output_types:
final_output = self.planner.generate_final_output(user_query, img_path, self.memory) # Disabled visibility for now
# messages.append(ChatMessage(role="assistant", content=f"π― Final Output:\n{final_output}"))
# yield messages
# Save the final output data
final_output_data = {
"final_output": final_output,
"time": round(time.time() - start_time, 5)
}
save_module_data(QUERY_ID, "final_output", final_output_data)
# Step 8: Completion Message
messages.append(ChatMessage(role="assistant", content="<br>"))
messages.append(ChatMessage(role="assistant", content="### β
Query Solved!"))
messages.append(ChatMessage(role="assistant", content="How do you like the output from OctoTools π? Please give us your feedback below. \n\nπ If the answer is correct or the reasoning steps are helpful, please upvote the output. \nπ If it is incorrect or the reasoning steps are not helpful, please downvote the output. \nπ¬ If you have any suggestions or comments, please leave them below.\n\nThank you for using OctoTools! π"))
yield messages
def parse_arguments():
parser = argparse.ArgumentParser(description="Run the OctoTools demo with specified parameters.")
parser.add_argument("--llm_engine_name", default="gpt-4o", help="LLM engine name.")
parser.add_argument("--max_tokens", type=int, default=2000, help="Maximum tokens for LLM generation.")
parser.add_argument("--task", default="minitoolbench", help="Task to run.")
parser.add_argument("--task_description", default="", help="Task description.")
parser.add_argument(
"--output_types",
default="base,final,direct",
help="Comma-separated list of required outputs (base,final,direct)"
)
parser.add_argument("--enabled_tools", default="Generalist_Solution_Generator_Tool", help="List of enabled tools.")
parser.add_argument("--root_cache_dir", default="solver_cache", help="Path to solver cache directory.")
parser.add_argument("--query_id", default=None, help="Query ID.")
parser.add_argument("--verbose", type=bool, default=True, help="Enable verbose output.")
# NOTE: Add new arguments
parser.add_argument("--run_baseline_only", type=bool, default=False, help="Run only the baseline (no toolbox).")
parser.add_argument("--openai_api_source", default="we_provided", choices=["we_provided", "user_provided"], help="Source of OpenAI API key.")
return parser.parse_args()
def solve_problem_gradio(user_query, user_image, max_steps=10, max_time=60, api_key=None, llm_model_engine=None, enabled_tools=None):
"""
Wrapper function to connect the solver to Gradio.
Streams responses from `solver.stream_solve_user_problem` for real-time UI updates.
"""
# Generate Unique Query ID (Date and first 8 characters of UUID)
query_id = time.strftime("%Y%m%d_%H%M%S") + "_" + str(uuid.uuid4())[:8] # e.g, 20250217_062225_612f2474
print(f"Query ID: {query_id}")
# NOTE: update the global variable to save the query ID
global QUERY_ID
QUERY_ID = query_id
# Create a directory for the query ID
query_cache_dir = os.path.join(DATASET_DIR.name, query_id) # NOTE
os.makedirs(query_cache_dir, exist_ok=True)
if api_key is None:
return [["assistant", "β οΈ Error: OpenAI API Key is required."]]
# Save the query data
save_query_data(
query_id=query_id,
query=user_query,
image_path=os.path.join(query_cache_dir, 'query_image.jpg') if user_image else None
)
# # Initialize Tools
# enabled_tools = args.enabled_tools.split(",") if args.enabled_tools else []
# # Hack enabled_tools
# enabled_tools = ["Generalist_Solution_Generator_Tool"]
# Instantiate Initializer
initializer = Initializer(
enabled_tools=enabled_tools,
model_string=llm_model_engine,
api_key=api_key
)
# Instantiate Planner
planner = Planner(
llm_engine_name=llm_model_engine,
toolbox_metadata=initializer.toolbox_metadata,
available_tools=initializer.available_tools,
api_key=api_key
)
# Instantiate Memory
memory = Memory()
# Instantiate Executor
executor = Executor(
llm_engine_name=llm_model_engine,
query_cache_dir=query_cache_dir, # NOTE
enable_signal=False,
api_key=api_key
)
# Instantiate Solver
solver = Solver(
planner=planner,
memory=memory,
executor=executor,
task=args.task,
task_description=args.task_description,
output_types=args.output_types, # Add new parameter
verbose=args.verbose,
max_steps=max_steps,
max_time=max_time,
query_cache_dir=query_cache_dir # NOTE
)
if solver is None:
return [["assistant", "β οΈ Error: Solver is not initialized. Please restart the application."]]
messages = [] # Initialize message list
for message_batch in solver.stream_solve_user_problem(user_query, user_image, api_key, messages):
yield [msg for msg in message_batch] # Ensure correct format for Gradio Chatbot
# Save steps
save_steps_data(
query_id=query_id,
memory=memory
)
def main(args):
#################### Gradio Interface ####################
with gr.Blocks() as demo:
# with gr.Blocks(theme=gr.themes.Soft()) as demo:
# Theming https://www.gradio.app/guides/theming-guide
gr.Markdown("# π Chat with OctoTools: An Agentic Framework with Extensive Tools for Complex Reasoning") # Title
# gr.Markdown("[](https://octotools.github.io/)") # Title
gr.Markdown("""
**OctoTools** is a training-free, user-friendly, and easily extensible open-source agentic framework designed to tackle complex reasoning across diverse domains.
It introduces standardized **tool cards** to encapsulate tool functionality, a **planner** for both high-level and low-level planning, and an **executor** to carry out tool usage.
[Website](https://octotools.github.io/) |
[Github](https://github.com/octotools/octotools) |
[arXiv](https://arxiv.org/abs/2502.11271) |
[Paper](https://arxiv.org/pdf/2502.11271) |
[Daily Paper](https://huggingface.co/papers/2502.11271) |
[Tool Cards](https://octotools.github.io/#tool-cards) |
[Example Visualizations](https://octotools.github.io/#visualization) |
[Coverage](https://x.com/lupantech/status/1892260474320015861) |
[Discord](https://discord.gg/NMJx66DC)
""")
with gr.Row():
# Left column for settings
with gr.Column(scale=1):
with gr.Row():
if args.openai_api_source == "user_provided":
print("Using API key from user input.")
api_key = gr.Textbox(
show_label=True,
placeholder="Your API key will not be stored in any way.",
type="password",
label="OpenAI API Key",
# container=False
)
else:
print(f"Using local API key from environment variable: ...{os.getenv('OPENAI_API_KEY')[-4:]}")
api_key = gr.Textbox(
value=os.getenv("OPENAI_API_KEY"),
visible=False,
interactive=False
)
with gr.Row():
llm_model_engine = gr.Dropdown(
choices=["gpt-4o", "gpt-4o-2024-11-20", "gpt-4o-2024-08-06", "gpt-4o-2024-05-13",
"gpt-4o-mini", "gpt-4o-mini-2024-07-18"],
value="gpt-4o",
label="LLM Model"
)
with gr.Row():
max_steps = gr.Slider(value=8, minimum=1, maximum=10, step=1, label="Max Steps")
with gr.Row():
max_time = gr.Slider(value=240, minimum=60, maximum=300, step=30, label="Max Time (seconds)")
with gr.Row():
# Container for tools section
with gr.Column():
# First row for checkbox group
enabled_tools = gr.CheckboxGroup(
choices=all_tools,
value=all_tools,
label="Selected Tools",
)
# Second row for buttons
with gr.Row():
enable_all_btn = gr.Button("Select All Tools")
disable_all_btn = gr.Button("Clear All Tools")
# Add click handlers for the buttons
enable_all_btn.click(
lambda: all_tools,
outputs=enabled_tools
)
disable_all_btn.click(
lambda: [],
outputs=enabled_tools
)
with gr.Column(scale=5):
with gr.Row():
# Middle column for the query
with gr.Column(scale=2):
user_image = gr.Image(type="pil", label="Upload an Image (Optional)", height=500) # Accepts multiple formats
with gr.Row():
user_query = gr.Textbox( placeholder="Type your question here...", label="Question (Required)")
with gr.Row():
run_button = gr.Button("π Submit and Run", variant="primary") # Run button with blue color
# Right column for the output
with gr.Column(scale=3):
chatbot_output = gr.Chatbot(type="messages", label="Step-wise Problem-Solving Output", height=500)
# TODO: Add actions to the buttons
with gr.Row(elem_id="buttons") as button_row:
upvote_btn = gr.Button(value="π Upvote", interactive=True, variant="primary") # TODO
downvote_btn = gr.Button(value="π Downvote", interactive=True, variant="primary") # TODO
# stop_btn = gr.Button(value="βοΈ Stop", interactive=True) # TODO
# clear_btn = gr.Button(value="ποΈ Clear history", interactive=True) # TODO
# TODO: Add comment textbox
with gr.Row():
comment_textbox = gr.Textbox(value="",
placeholder="Feel free to add any comments here. Thanks for using OctoTools!",
label="π¬ Comment (Type and press Enter to submit.)", interactive=True) # TODO
# Update the button click handlers
upvote_btn.click(
fn=lambda: save_feedback(QUERY_ID, "upvote"),
inputs=[],
outputs=[]
)
downvote_btn.click(
fn=lambda: save_feedback(QUERY_ID, "downvote"),
inputs=[],
outputs=[]
)
# Add handler for comment submission
comment_textbox.submit(
fn=lambda comment: save_feedback(QUERY_ID, "comment", comment),
inputs=[comment_textbox],
outputs=[]
)
# Bottom row for examples
with gr.Row():
with gr.Column(scale=5):
gr.Markdown("")
gr.Markdown("""
## π‘ Try these examples with suggested tools.
""")
gr.Examples(
examples=[
# [ None, "Who is the president of the United States?", ["Google_Search_Tool"]],
[ "Logical Reasoning",
None,
"How many r letters are in the word strawberry?",
["Generalist_Solution_Generator_Tool", "Python_Code_Generator_Tool"],
"3"],
[ "Web Search",
None,
"What's up with the upcoming Apple Launch? Any rumors?",
["Generalist_Solution_Generator_Tool", "Google_Search_Tool", "Wikipedia_Knowledge_Searcher_Tool", "URL_Text_Extractor_Tool"],
"Apple's February 19, 2025, event may feature the iPhone SE 4, new iPads, accessories, and rumored iPhone 17 and Apple Watch Series 10."],
[ "Arithmetic Reasoning",
None,
"Which is bigger, 9.11 or 9.9?",
["Generalist_Solution_Generator_Tool", "Python_Code_Generator_Tool"],
"9.9"],
[ "Multi-step Reasoning",
None,
"Using the numbers [1, 1, 6, 9], create an expression that equals 24. You must use basic arithmetic operations (+, -, Γ, /) and parentheses. For example, one solution for [1, 2, 3, 4] is (1+2+3)Γ4.", ["Python_Code_Generator_Tool"],
"((1 + 1) * 9) + 6"],
[ "Scientific Research",
None,
"What are the research trends in tool agents with large language models for scientific discovery? Please consider the latest literature from ArXiv, PubMed, Nature, and news sources.", ["ArXiv_Paper_Searcher_Tool", "Pubmed_Search_Tool", "Nature_News_Fetcher_Tool"],
"Open-ended question. No reference answer."],
[ "Visual Perception",
"examples/baseball.png",
"How many baseballs are there?",
["Object_Detector_Tool"],
"20"],
[ "Visual Reasoning",
"examples/rotting_kiwi.png",
"You are given a 3 x 3 grid in which each cell can contain either no kiwi, one fresh kiwi, or one rotten kiwi. Every minute, any fresh kiwi that is 4-directionally adjacent to a rotten kiwi also becomes rotten. What is the minimum number of minutes that must elapse until no cell has a fresh kiwi?", ["Image_Captioner_Tool"],
"4 minutes"],
[ "Medical Image Analysis",
"examples/lung.jpg",
"What is the organ on the left side of this image?",
["Image_Captioner_Tool", "Relevant_Patch_Zoomer_Tool"],
"Lung"],
[ "Pathology Diagnosis",
"examples/pathology.jpg",
"What are the cell types in this image?",
["Generalist_Solution_Generator_Tool", "Image_Captioner_Tool", "Relevant_Patch_Zoomer_Tool"],
"Need expert insights."],
],
inputs=[gr.Textbox(label="Category", visible=False), user_image, user_query, enabled_tools, gr.Textbox(label="Reference Answer", visible=False)],
# label="Try these examples with suggested tools."
)
# Link button click to function
run_button.click(
fn=solve_problem_gradio,
inputs=[user_query, user_image, max_steps, max_time, api_key, llm_model_engine, enabled_tools],
outputs=chatbot_output
)
#################### Gradio Interface ####################
# Launch the Gradio app
demo.launch(ssr_mode=False)
if __name__ == "__main__":
args = parse_arguments()
# All tools
all_tools = [
"Generalist_Solution_Generator_Tool",
"Image_Captioner_Tool",
"Object_Detector_Tool",
"Relevant_Patch_Zoomer_Tool",
"Text_Detector_Tool",
"Python_Code_Generator_Tool",
"ArXiv_Paper_Searcher_Tool",
"Google_Search_Tool",
"Nature_News_Fetcher_Tool",
"Pubmed_Search_Tool",
"URL_Text_Extractor_Tool",
"Wikipedia_Knowledge_Searcher_Tool"
]
args.enabled_tools = ",".join(all_tools)
# NOTE: Use the same name for the query cache directory as the dataset directory
args.root_cache_dir = DATASET_DIR.name
main(args)
|