octotools / app_bak_0215.py
lupantech's picture
opentools-->octotools; added remaining tools; polished the ui
ac47a36
raw
history blame
12.5 kB
import os
import sys
import json
import argparse
import time
import io
import uuid
from PIL import Image
from typing import List, Dict, Any, Iterator
import gradio as gr
# Add the project root to the Python path
current_dir = os.path.dirname(os.path.abspath(__file__))
project_root = os.path.dirname(os.path.dirname(os.path.dirname(current_dir)))
sys.path.insert(0, project_root)
from opentools.models.initializer import Initializer
from opentools.models.planner import Planner
from opentools.models.memory import Memory
from opentools.models.executor import Executor
from opentools.models.utlis import make_json_serializable
solver = None
class ChatMessage:
def __init__(self, role: str, content: str, metadata: dict = None):
self.role = role
self.content = content
self.metadata = metadata or {}
class Solver:
def __init__(
self,
planner,
memory,
executor,
task: str,
task_description: str,
output_types: str = "base,final,direct",
index: int = 0,
verbose: bool = True,
max_steps: int = 10,
max_time: int = 60,
output_json_dir: str = "results",
root_cache_dir: str = "cache"
):
self.planner = planner
self.memory = memory
self.executor = executor
self.task = task
self.task_description = task_description
self.index = index
self.verbose = verbose
self.max_steps = max_steps
self.max_time = max_time
self.output_json_dir = output_json_dir
self.root_cache_dir = root_cache_dir
self.output_types = output_types.lower().split(',')
assert all(output_type in ["base", "final", "direct"] for output_type in self.output_types), "Invalid output type. Supported types are 'base', 'final', 'direct'."
# self.benchmark_data = self.load_benchmark_data()
def stream_solve_user_problem(self, user_query: str, user_image: Image.Image, messages: List[ChatMessage]) -> Iterator[List[ChatMessage]]:
"""
Streams intermediate thoughts and final responses for the problem-solving process based on user input.
Args:
user_query (str): The text query input from the user.
user_image (Image.Image): The uploaded image from the user (PIL Image object).
messages (list): A list of ChatMessage objects to store the streamed responses.
"""
if user_image:
# # Convert PIL Image to bytes (for processing)
# img_bytes_io = io.BytesIO()
# user_image.save(img_bytes_io, format="PNG") # Convert image to PNG bytes
# img_bytes = img_bytes_io.getvalue() # Get bytes
# Use image paths instead of bytes,
os.makedirs(os.path.join(self.root_cache_dir, 'images'), exist_ok=True)
img_path = os.path.join(self.root_cache_dir, 'images', str(uuid.uuid4()) + '.jpg')
user_image.save(img_path)
else:
img_path = None
# Set query cache
_cache_dir = os.path.join(self.root_cache_dir)
self.executor.set_query_cache_dir(_cache_dir)
# Step 1: Display the received inputs
if user_image:
messages.append(ChatMessage(role="assistant", content=f"πŸ“ Received Query: {user_query}\nπŸ–ΌοΈ Image Uploaded"))
else:
messages.append(ChatMessage(role="assistant", content=f"πŸ“ Received Query: {user_query}"))
yield messages
# Step 2: Add "thinking" status while processing
messages.append(ChatMessage(
role="assistant",
content="",
metadata={"title": "⏳ Thinking: Processing input..."}
))
# Step 3: Initialize problem-solving state
start_time = time.time()
step_count = 0
json_data = {"query": user_query, "image": "Image received as bytes"}
# Step 4: Query Analysis
query_analysis = self.planner.analyze_query(user_query, img_path)
json_data["query_analysis"] = query_analysis
messages.append(ChatMessage(role="assistant", content=f"πŸ” Query Analysis:\n{query_analysis}"))
yield messages
# Step 5: Execution loop (similar to your step-by-step solver)
while step_count < self.max_steps and (time.time() - start_time) < self.max_time:
step_count += 1
messages.append(ChatMessage(role="assistant", content=f"πŸ”„ Step {step_count}: Generating next step..."))
yield messages
# Generate the next step
next_step = self.planner.generate_next_step(
user_query, img_path, query_analysis, self.memory, step_count, self.max_steps
)
context, sub_goal, tool_name = self.planner.extract_context_subgoal_and_tool(next_step)
# Display the step information
messages.append(ChatMessage(
role="assistant",
content=f"πŸ“Œ Step {step_count} Details:\n- Context: {context}\n- Sub-goal: {sub_goal}\n- Tool: {tool_name}"
))
yield messages
# Handle tool execution or errors
if tool_name not in self.planner.available_tools:
messages.append(ChatMessage(role="assistant", content=f"⚠️ Error: Tool '{tool_name}' is not available."))
yield messages
continue
# Execute the tool command
tool_command = self.executor.generate_tool_command(
user_query, img_path, context, sub_goal, tool_name, self.planner.toolbox_metadata[tool_name]
)
explanation, command = self.executor.extract_explanation_and_command(tool_command)
result = self.executor.execute_tool_command(tool_name, command)
result = make_json_serializable(result)
messages.append(ChatMessage(role="assistant", content=f"βœ… Step {step_count} Result:\n{json.dumps(result, indent=4)}"))
yield messages
# Step 6: Memory update and stopping condition
self.memory.add_action(step_count, tool_name, sub_goal, tool_command, result)
stop_verification = self.planner.verificate_memory(user_query, img_path, query_analysis, self.memory)
conclusion = self.planner.extract_conclusion(stop_verification)
messages.append(ChatMessage(role="assistant", content=f"πŸ›‘ Step {step_count} Conclusion: {conclusion}"))
yield messages
if conclusion == 'STOP':
break
# Step 7: Generate Final Output (if needed)
if 'final' in self.output_types:
final_output = self.planner.generate_final_output(user_query, img_path, self.memory)
messages.append(ChatMessage(role="assistant", content=f"🎯 Final Output:\n{final_output}"))
yield messages
if 'direct' in self.output_types:
direct_output = self.planner.generate_direct_output(user_query, img_path, self.memory)
messages.append(ChatMessage(role="assistant", content=f"πŸ”Ή Direct Output:\n{direct_output}"))
yield messages
# Step 8: Completion Message
messages.append(ChatMessage(role="assistant", content="βœ… Problem-solving process complete."))
yield messages
def parse_arguments():
parser = argparse.ArgumentParser(description="Run the OpenTools demo with specified parameters.")
parser.add_argument("--llm_engine_name", default="gpt-4o", help="LLM engine name.")
parser.add_argument("--max_tokens", type=int, default=2000, help="Maximum tokens for LLM generation.")
parser.add_argument("--run_baseline_only", type=bool, default=False, help="Run only the baseline (no toolbox).")
parser.add_argument("--task", default="minitoolbench", help="Task to run.")
parser.add_argument("--task_description", default="", help="Task description.")
parser.add_argument(
"--output_types",
default="base,final,direct",
help="Comma-separated list of required outputs (base,final,direct)"
)
parser.add_argument("--enabled_tools", default="Generalist_Solution_Generator_Tool", help="List of enabled tools.")
parser.add_argument("--root_cache_dir", default="demo_solver_cache", help="Path to solver cache directory.")
parser.add_argument("--output_json_dir", default="demo_results", help="Path to output JSON directory.")
parser.add_argument("--max_steps", type=int, default=10, help="Maximum number of steps to execute.")
parser.add_argument("--max_time", type=int, default=60, help="Maximum time allowed in seconds.")
parser.add_argument("--verbose", type=bool, default=True, help="Enable verbose output.")
return parser.parse_args()
def solve_problem_gradio(user_query, user_image):
"""
Wrapper function to connect the solver to Gradio.
Streams responses from `solver.stream_solve_user_problem` for real-time UI updates.
"""
global solver # Ensure we're using the globally defined solver
if solver is None:
return [["assistant", "⚠️ Error: Solver is not initialized. Please restart the application."]]
messages = [] # Initialize message list
for message_batch in solver.stream_solve_user_problem(user_query, user_image, messages):
yield [[msg.role, msg.content] for msg in message_batch] # Ensure correct format for Gradio Chatbot
def main(args):
global solver
# Initialize Tools
enabled_tools = args.enabled_tools.split(",") if args.enabled_tools else []
# Instantiate Initializer
initializer = Initializer(
enabled_tools=enabled_tools,
model_string=args.llm_engine_name
)
# Instantiate Planner
planner = Planner(
llm_engine_name=args.llm_engine_name,
toolbox_metadata=initializer.toolbox_metadata,
available_tools=initializer.available_tools
)
# Instantiate Memory
memory = Memory()
# Instantiate Executor
executor = Executor(
llm_engine_name=args.llm_engine_name,
root_cache_dir=args.root_cache_dir,
enable_signal=False
)
# Instantiate Solver
solver = Solver(
planner=planner,
memory=memory,
executor=executor,
task=args.task,
task_description=args.task_description,
output_types=args.output_types, # Add new parameter
verbose=args.verbose,
max_steps=args.max_steps,
max_time=args.max_time,
output_json_dir=args.output_json_dir,
root_cache_dir=args.root_cache_dir
)
# Test Inputs
# user_query = "How many balls are there in the image?"
# user_image_path = "/home/sheng/toolbox-agent/mathvista_113.png" # Replace with your actual image path
# # Load the image as a PIL object
# user_image = Image.open(user_image_path).convert("RGB") # Ensure it's in RGB mode
# print("\n=== Starting Problem Solving ===\n")
# messages = []
# for message_batch in solver.stream_solve_user_problem(user_query, user_image, messages):
# for message in message_batch:
# print(f"{message.role}: {message.content}")
# messages = []
# solver.stream_solve_user_problem(user_query, user_image, messages)
# def solve_problem_stream(user_query, user_image):
# messages = [] # Ensure it's a list of [role, content] pairs
# for message_batch in solver.stream_solve_user_problem(user_query, user_image, messages):
# yield message_batch # Stream messages correctly in tuple format
# solve_problem_stream(user_query, user_image)
# ========== Gradio Interface ==========
with gr.Blocks() as demo:
gr.Markdown("# 🧠 OctoTools AI Solver") # Title
with gr.Row():
user_query = gr.Textbox(label="Enter your query", placeholder="Type your question here...")
user_image = gr.Image(type="pil", label="Upload an image") # Accepts multiple formats
run_button = gr.Button("Run") # Run button
chatbot_output = gr.Chatbot(label="Problem-Solving Output")
# Link button click to function
run_button.click(fn=solve_problem_gradio, inputs=[user_query, user_image], outputs=chatbot_output)
# Launch the Gradio app
demo.launch()
if __name__ == "__main__":
args = parse_arguments()
main(args)