Omartificial-Intelligence-Space's picture
update submit
96f572b verified
raw
history blame
9.11 kB
import json
import os
from datetime import datetime, timezone
import torch
import pandas as pd
import numpy as np
from datasets import load_dataset
from transformers import AutoTokenizer, AutoModelForCausalLM
from langchain.prompts import PromptTemplate
from src.display.formatting import styled_error, styled_message, styled_warning
from src.envs import API, EVAL_REQUESTS_PATH, TOKEN, QUEUE_REPO, EVAL_RESULTS_PATH, RESULTS_REPO
from src.submission.check_validity import (
already_submitted_models,
check_model_card,
get_model_size,
is_model_on_hub,
)
REQUESTED_MODELS = None
USERS_TO_SUBMISSION_DATES = None
def get_top_prediction(text, tokenizer, model):
inputs = tokenizer(text, return_tensors='pt')
if torch.cuda.is_available():
model = model.cuda()
inputs = {k: v.cuda() for k, v in inputs.items()}
with torch.no_grad():
outputs = model(**inputs)
logits = outputs.logits[0, -1]
options = [' A', ' B', ' C', ' D']
option_logits = []
for option in options:
option_id = tokenizer(option).input_ids[-1]
option_logit = logits[option_id]
option_logits.append((option_logit.item(), option.strip()))
# Get the option with the highest logit
top_option = max(option_logits, key=lambda x: x[0])[1]
return top_option
def evaluate_model_accuracy(model_name, num_examples):
try:
# Load the model and tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
tokenizer.pad_token = tokenizer.eos_token
model = AutoModelForCausalLM.from_pretrained(
model_name,
trust_remote_code=True
)
if torch.cuda.is_available():
model = model.cuda() # Move model to GPU if available
# Load your dataset
dataset = load_dataset("Omartificial-Intelligence-Space/Arabic_Openai_MMMLU")
dataset = dataset['test']
# Convert the dataset to a pandas DataFrame for easier manipulation
df_dataset = dataset.to_pandas()
# Get list of unique subjects
subjects = df_dataset['Subject'].unique()
# Define prompt template
template = """Answer the following multiple choice question by giving the most appropriate response. Answer should be one among [A, B, C, D].
Question: {Question}
A) {A}
B) {B}
C) {C}
D) {D}
Answer:"""
prompt_template = PromptTemplate(template=template, input_variables=['Question', 'A', 'B', 'C', 'D'])
# Initialize counters and results
overall_correct_predictions = 0
overall_total_questions = 0
per_subject_results = []
detailed_results = []
for subject in subjects:
# Filter dataset for the current subject
subject_df = df_dataset[df_dataset['Subject'] == subject]
# Select up to num_examples questions
subject_df = subject_df.sample(n=min(num_examples, len(subject_df)), random_state=42)
# Initialize counters for this subject
correct_predictions = 0
total_questions = 0
for idx, data in subject_df.iterrows():
# Prepare text input
text = prompt_template.format(
Question=data['Question'],
A=data['A'],
B=data['B'],
C=data['C'],
D=data['D']
)
# Get the top prediction
top_prediction = get_top_prediction(text, tokenizer, model)
is_correct = (top_prediction == data['Answer'])
correct_predictions += int(is_correct)
total_questions += 1
overall_correct_predictions += int(is_correct)
overall_total_questions +=1
detailed_results.append({
'Subject': subject,
'Question': data['Question'],
'Answer': data['Answer'],
'Prediction': top_prediction,
'Correct': is_correct
})
# Compute accuracy for this subject
subject_accuracy = correct_predictions / total_questions if total_questions > 0 else 0
per_subject_results.append({
'Subject': subject,
'Total Score': correct_predictions,
'Total Questions': total_questions,
'Accuracy (%)': subject_accuracy * 100
})
# Compute overall accuracy
overall_accuracy = overall_correct_predictions / overall_total_questions if overall_total_questions > 0 else 0
# Convert per_subject_results to DataFrame
df_per_subject = pd.DataFrame(per_subject_results)
# Convert detailed_results to DataFrame
df_detailed_results = pd.DataFrame(detailed_results)
return overall_accuracy, df_per_subject, df_detailed_results
except Exception as e:
return f"Error: {str(e)}", pd.DataFrame(), pd.DataFrame()
def add_new_eval(
model: str,
base_model: str,
revision: str,
precision: str,
weight_type: str,
model_type: str,
num_examples: int # New parameter
):
global REQUESTED_MODELS
global USERS_TO_SUBMISSION_DATES
if not REQUESTED_MODELS:
REQUESTED_MODELS, USERS_TO_SUBMISSION_DATES = already_submitted_models(EVAL_REQUESTS_PATH)
user_name = ""
model_path = model
if "/" in model:
user_name = model.split("/")[0]
model_path = model.split("/")[1]
precision = precision.split(" ")[0]
current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ")
if model_type is None or model_type == "":
return styled_error("Please select a model type.")
# Does the model actually exist?
if revision == "":
revision = "main"
# Is the model on the hub?
if weight_type in ["Delta", "Adapter"]:
base_model_on_hub, error, _ = is_model_on_hub(model_name=base_model, revision=revision, token=TOKEN, test_tokenizer=True)
if not base_model_on_hub:
return styled_error(f'Base model "{base_model}" {error}')
if not weight_type == "Adapter":
model_on_hub, error, _ = is_model_on_hub(model_name=model, revision=revision, token=TOKEN, test_tokenizer=True)
if not model_on_hub:
return styled_error(f'Model "{model}" {error}')
# Is the model info correctly filled?
try:
model_info = API.model_info(repo_id=model, revision=revision)
except Exception:
return styled_error("Could not get your model information. Please fill it up properly.")
model_size = get_model_size(model_info=model_info, precision=precision)
# Were the model card and license filled?
try:
license = model_info.cardData["license"]
except Exception:
return styled_error("Please select a license for your model")
modelcard_OK, error_msg = check_model_card(model)
if not modelcard_OK:
return styled_error(error_msg)
# Check for duplicate submission
if f"{model}_{revision}_{precision}" in REQUESTED_MODELS:
return styled_warning("This model has been already submitted.")
# Now, perform the evaluation
try:
overall_accuracy, df_per_subject, df_detailed_results = evaluate_model_accuracy(model, int(num_examples))
if isinstance(overall_accuracy, str) and overall_accuracy.startswith("Error"):
return styled_error(overall_accuracy)
except Exception as e:
return styled_error(f"An error occurred during evaluation: {str(e)}")
# Prepare results for storage
results_dict = {
"config": {
"model_name": model,
"model_sha": revision,
"model_dtype": precision,
"submitted_time": current_time,
"model_type": model_type,
"weight_type": weight_type,
"license": license,
"likes": model_info.likes,
"params": model_size,
"still_on_hub": True,
"precision": precision,
},
"results": {
"average": overall_accuracy * 100,
},
}
# Include per-subject accuracies
for idx, row in df_per_subject.iterrows():
subject_name = row['Subject']
accuracy = row['Accuracy (%)']
results_dict['results'][subject_name] = accuracy
# Save results to a JSON file
results_file_path = f"{EVAL_RESULTS_PATH}/{model.replace('/', '_')}_results.json"
with open(results_file_path, "w") as f:
json.dump(results_dict, f)
# Upload the results file
API.upload_file(
path_or_fileobj=results_file_path,
path_in_repo=results_file_path.split(f"{EVAL_RESULTS_PATH}/")[1],
repo_id=RESULTS_REPO,
repo_type="dataset",
commit_message=f"Add results for {model}"
)
# Remove the local results file
os.remove(results_file_path)
return styled_message("Your model has been evaluated and the results are now on the leaderboard!")