Spaces:
Running
on
Zero
Running
on
Zero
from functools import reduce | |
import math | |
import numpy as np | |
import torch | |
from torch import nn | |
from torch.nn import functional as F | |
from torch.backends.cuda import sdp_kernel | |
from packaging import version | |
from .nn.layers import Snake1d | |
class ResidualBlock(nn.Module): | |
def __init__(self, main, skip=None): | |
super().__init__() | |
self.main = nn.Sequential(*main) | |
self.skip = skip if skip else nn.Identity() | |
def forward(self, input): | |
return self.main(input) + self.skip(input) | |
class ResConvBlock(ResidualBlock): | |
def __init__(self, c_in, c_mid, c_out, is_last=False, kernel_size=5, conv_bias=True, use_snake=False): | |
skip = None if c_in == c_out else nn.Conv1d(c_in, c_out, 1, bias=False) | |
super().__init__([ | |
nn.Conv1d(c_in, c_mid, kernel_size, padding=kernel_size//2, bias=conv_bias), | |
nn.GroupNorm(1, c_mid), | |
Snake1d(c_mid) if use_snake else nn.GELU(), | |
nn.Conv1d(c_mid, c_out, kernel_size, padding=kernel_size//2, bias=conv_bias), | |
nn.GroupNorm(1, c_out) if not is_last else nn.Identity(), | |
(Snake1d(c_out) if use_snake else nn.GELU()) if not is_last else nn.Identity(), | |
], skip) | |
class SelfAttention1d(nn.Module): | |
def __init__(self, c_in, n_head=1, dropout_rate=0.): | |
super().__init__() | |
assert c_in % n_head == 0 | |
self.norm = nn.GroupNorm(1, c_in) | |
self.n_head = n_head | |
self.qkv_proj = nn.Conv1d(c_in, c_in * 3, 1) | |
self.out_proj = nn.Conv1d(c_in, c_in, 1) | |
self.dropout = nn.Dropout(dropout_rate, inplace=True) | |
self.use_flash = torch.cuda.is_available() and version.parse(torch.__version__) >= version.parse('2.0.0') | |
if not self.use_flash: | |
return | |
device_properties = torch.cuda.get_device_properties(torch.device('cuda')) | |
if device_properties.major == 8 and device_properties.minor == 0: | |
# Use flash attention for A100 GPUs | |
self.sdp_kernel_config = (True, False, False) | |
else: | |
# Don't use flash attention for other GPUs | |
self.sdp_kernel_config = (False, True, True) | |
def forward(self, input): | |
n, c, s = input.shape | |
qkv = self.qkv_proj(self.norm(input)) | |
qkv = qkv.view( | |
[n, self.n_head * 3, c // self.n_head, s]).transpose(2, 3) | |
q, k, v = qkv.chunk(3, dim=1) | |
scale = k.shape[3]**-0.25 | |
if self.use_flash: | |
with sdp_kernel(*self.sdp_kernel_config): | |
y = F.scaled_dot_product_attention(q, k, v, is_causal=False).contiguous().view([n, c, s]) | |
else: | |
att = ((q * scale) @ (k.transpose(2, 3) * scale)).softmax(3) | |
y = (att @ v).transpose(2, 3).contiguous().view([n, c, s]) | |
return input + self.dropout(self.out_proj(y)) | |
class SkipBlock(nn.Module): | |
def __init__(self, *main): | |
super().__init__() | |
self.main = nn.Sequential(*main) | |
def forward(self, input): | |
return torch.cat([self.main(input), input], dim=1) | |
class FourierFeatures(nn.Module): | |
def __init__(self, in_features, out_features, std=1.): | |
super().__init__() | |
assert out_features % 2 == 0 | |
self.weight = nn.Parameter(torch.randn( | |
[out_features // 2, in_features]) * std) | |
def forward(self, input): | |
f = 2 * math.pi * input @ self.weight.T | |
return torch.cat([f.cos(), f.sin()], dim=-1) | |
def expand_to_planes(input, shape): | |
return input[..., None].repeat([1, 1, shape[2]]) | |
_kernels = { | |
'linear': | |
[1 / 8, 3 / 8, 3 / 8, 1 / 8], | |
'cubic': | |
[-0.01171875, -0.03515625, 0.11328125, 0.43359375, | |
0.43359375, 0.11328125, -0.03515625, -0.01171875], | |
'lanczos3': | |
[0.003689131001010537, 0.015056144446134567, -0.03399861603975296, | |
-0.066637322306633, 0.13550527393817902, 0.44638532400131226, | |
0.44638532400131226, 0.13550527393817902, -0.066637322306633, | |
-0.03399861603975296, 0.015056144446134567, 0.003689131001010537] | |
} | |
class Downsample1d(nn.Module): | |
def __init__(self, kernel='linear', pad_mode='reflect', channels_last=False): | |
super().__init__() | |
self.pad_mode = pad_mode | |
kernel_1d = torch.tensor(_kernels[kernel]) | |
self.pad = kernel_1d.shape[0] // 2 - 1 | |
self.register_buffer('kernel', kernel_1d) | |
self.channels_last = channels_last | |
def forward(self, x): | |
if self.channels_last: | |
x = x.permute(0, 2, 1) | |
x = F.pad(x, (self.pad,) * 2, self.pad_mode) | |
weight = x.new_zeros([x.shape[1], x.shape[1], self.kernel.shape[0]]) | |
indices = torch.arange(x.shape[1], device=x.device) | |
weight[indices, indices] = self.kernel.to(weight) | |
x = F.conv1d(x, weight, stride=2) | |
if self.channels_last: | |
x = x.permute(0, 2, 1) | |
return x | |
class Upsample1d(nn.Module): | |
def __init__(self, kernel='linear', pad_mode='reflect', channels_last=False): | |
super().__init__() | |
self.pad_mode = pad_mode | |
kernel_1d = torch.tensor(_kernels[kernel]) * 2 | |
self.pad = kernel_1d.shape[0] // 2 - 1 | |
self.register_buffer('kernel', kernel_1d) | |
self.channels_last = channels_last | |
def forward(self, x): | |
if self.channels_last: | |
x = x.permute(0, 2, 1) | |
x = F.pad(x, ((self.pad + 1) // 2,) * 2, self.pad_mode) | |
weight = x.new_zeros([x.shape[1], x.shape[1], self.kernel.shape[0]]) | |
indices = torch.arange(x.shape[1], device=x.device) | |
weight[indices, indices] = self.kernel.to(weight) | |
x = F.conv_transpose1d(x, weight, stride=2, padding=self.pad * 2 + 1) | |
if self.channels_last: | |
x = x.permute(0, 2, 1) | |
return x | |
def Downsample1d_2( | |
in_channels: int, out_channels: int, factor: int, kernel_multiplier: int = 2 | |
) -> nn.Module: | |
assert kernel_multiplier % 2 == 0, "Kernel multiplier must be even" | |
return nn.Conv1d( | |
in_channels=in_channels, | |
out_channels=out_channels, | |
kernel_size=factor * kernel_multiplier + 1, | |
stride=factor, | |
padding=factor * (kernel_multiplier // 2), | |
) | |
def Upsample1d_2( | |
in_channels: int, out_channels: int, factor: int, use_nearest: bool = False | |
) -> nn.Module: | |
if factor == 1: | |
return nn.Conv1d( | |
in_channels=in_channels, out_channels=out_channels, kernel_size=3, padding=1 | |
) | |
if use_nearest: | |
return nn.Sequential( | |
nn.Upsample(scale_factor=factor, mode="nearest"), | |
nn.Conv1d( | |
in_channels=in_channels, | |
out_channels=out_channels, | |
kernel_size=3, | |
padding=1, | |
), | |
) | |
else: | |
return nn.ConvTranspose1d( | |
in_channels=in_channels, | |
out_channels=out_channels, | |
kernel_size=factor * 2, | |
stride=factor, | |
padding=factor // 2 + factor % 2, | |
output_padding=factor % 2, | |
) | |
def zero_init(layer): | |
nn.init.zeros_(layer.weight) | |
if layer.bias is not None: | |
nn.init.zeros_(layer.bias) | |
return layer | |
def rms_norm(x, scale, eps): | |
dtype = reduce(torch.promote_types, (x.dtype, scale.dtype, torch.float32)) | |
mean_sq = torch.mean(x.to(dtype)**2, dim=-1, keepdim=True) | |
scale = scale.to(dtype) * torch.rsqrt(mean_sq + eps) | |
return x * scale.to(x.dtype) | |
#rms_norm = torch.compile(rms_norm) | |
class AdaRMSNorm(nn.Module): | |
def __init__(self, features, cond_features, eps=1e-6): | |
super().__init__() | |
self.eps = eps | |
self.linear = zero_init(nn.Linear(cond_features, features, bias=False)) | |
def extra_repr(self): | |
return f"eps={self.eps}," | |
def forward(self, x, cond): | |
return rms_norm(x, self.linear(cond)[:, None, :] + 1, self.eps) | |
def normalize(x, eps=1e-4): | |
dim = list(range(1, x.ndim)) | |
n = torch.linalg.vector_norm(x, dim=dim, keepdim=True) | |
alpha = np.sqrt(n.numel() / x.numel()) | |
return x / torch.add(eps, n, alpha=alpha) | |
class ForcedWNConv1d(nn.Module): | |
def __init__(self, in_channels, out_channels, kernel_size=1): | |
super().__init__() | |
self.weight = nn.Parameter(torch.randn([out_channels, in_channels, kernel_size])) | |
def forward(self, x): | |
if self.training: | |
with torch.no_grad(): | |
self.weight.copy_(normalize(self.weight)) | |
fan_in = self.weight[0].numel() | |
w = normalize(self.weight) / math.sqrt(fan_in) | |
return F.conv1d(x, w, padding='same') | |
# Kernels | |
use_compile = True | |
def compile(function, *args, **kwargs): | |
if not use_compile: | |
return function | |
try: | |
return torch.compile(function, *args, **kwargs) | |
except RuntimeError: | |
return function | |
def linear_geglu(x, weight, bias=None): | |
x = x @ weight.mT | |
if bias is not None: | |
x = x + bias | |
x, gate = x.chunk(2, dim=-1) | |
return x * F.gelu(gate) | |
def rms_norm(x, scale, eps): | |
dtype = reduce(torch.promote_types, (x.dtype, scale.dtype, torch.float32)) | |
mean_sq = torch.mean(x.to(dtype)**2, dim=-1, keepdim=True) | |
scale = scale.to(dtype) * torch.rsqrt(mean_sq + eps) | |
return x * scale.to(x.dtype) | |
# Layers | |
class LinearGEGLU(nn.Linear): | |
def __init__(self, in_features, out_features, bias=True): | |
super().__init__(in_features, out_features * 2, bias=bias) | |
self.out_features = out_features | |
def forward(self, x): | |
return linear_geglu(x, self.weight, self.bias) | |
class RMSNorm(nn.Module): | |
def __init__(self, shape, fix_scale = False, eps=1e-6): | |
super().__init__() | |
self.eps = eps | |
if fix_scale: | |
self.register_buffer("scale", torch.ones(shape)) | |
else: | |
self.scale = nn.Parameter(torch.ones(shape)) | |
def extra_repr(self): | |
return f"shape={tuple(self.scale.shape)}, eps={self.eps}" | |
def forward(self, x): | |
return rms_norm(x, self.scale, self.eps) | |
# jit script make it 1.4x faster and save GPU memory | |
def snake_beta(x, alpha, beta): | |
return x + (1.0 / (beta + 0.000000001)) * pow(torch.sin(x * alpha), 2) | |
# try: | |
# snake_beta = torch.compile(snake_beta) | |
# except RuntimeError: | |
# pass | |
# Adapted from https://github.com/NVIDIA/BigVGAN/blob/main/activations.py under MIT license | |
# License available in LICENSES/LICENSE_NVIDIA.txt | |
class SnakeBeta(nn.Module): | |
def __init__(self, in_features, alpha=1.0, alpha_trainable=True, alpha_logscale=True): | |
super(SnakeBeta, self).__init__() | |
self.in_features = in_features | |
# initialize alpha | |
self.alpha_logscale = alpha_logscale | |
if self.alpha_logscale: | |
# log scale alphas initialized to zeros | |
self.alpha = nn.Parameter(torch.zeros(in_features) * alpha) | |
self.beta = nn.Parameter(torch.zeros(in_features) * alpha) | |
else: | |
# linear scale alphas initialized to ones | |
self.alpha = nn.Parameter(torch.ones(in_features) * alpha) | |
self.beta = nn.Parameter(torch.ones(in_features) * alpha) | |
self.alpha.requires_grad = alpha_trainable | |
self.beta.requires_grad = alpha_trainable | |
# self.no_div_by_zero = 0.000000001 | |
def forward(self, x): | |
alpha = self.alpha.unsqueeze(0).unsqueeze(-1) | |
# line up with x to [B, C, T] | |
beta = self.beta.unsqueeze(0).unsqueeze(-1) | |
if self.alpha_logscale: | |
alpha = torch.exp(alpha) | |
beta = torch.exp(beta) | |
x = snake_beta(x, alpha, beta) | |
return x |