anonymous9a7b
1
f032e68
raw
history blame
12 kB
import typing
from typing import List
import torch
import torch.nn.functional as F
from audiotools import AudioSignal
from audiotools import STFTParams
from torch import nn
class L1Loss(nn.L1Loss):
"""L1 Loss between AudioSignals. Defaults
to comparing ``audio_data``, but any
attribute of an AudioSignal can be used.
Parameters
----------
attribute : str, optional
Attribute of signal to compare, defaults to ``audio_data``.
weight : float, optional
Weight of this loss, defaults to 1.0.
Implementation copied from: https://github.com/descriptinc/lyrebird-audiotools/blob/961786aa1a9d628cca0c0486e5885a457fe70c1a/audiotools/metrics/distance.py
"""
def __init__(self, attribute: str = "audio_data", weight: float = 1.0, **kwargs):
self.attribute = attribute
self.weight = weight
super().__init__(**kwargs)
def forward(self, x: AudioSignal, y: AudioSignal):
"""
Parameters
----------
x : AudioSignal
Estimate AudioSignal
y : AudioSignal
Reference AudioSignal
Returns
-------
torch.Tensor
L1 loss between AudioSignal attributes.
"""
if isinstance(x, AudioSignal):
x = getattr(x, self.attribute)
y = getattr(y, self.attribute)
return super().forward(x, y)
class SISDRLoss(nn.Module):
"""
Computes the Scale-Invariant Source-to-Distortion Ratio between a batch
of estimated and reference audio signals or aligned features.
Parameters
----------
scaling : int, optional
Whether to use scale-invariant (True) or
signal-to-noise ratio (False), by default True
reduction : str, optional
How to reduce across the batch (either 'mean',
'sum', or none).], by default ' mean'
zero_mean : int, optional
Zero mean the references and estimates before
computing the loss, by default True
clip_min : int, optional
The minimum possible loss value. Helps network
to not focus on making already good examples better, by default None
weight : float, optional
Weight of this loss, defaults to 1.0.
Implementation copied from: https://github.com/descriptinc/lyrebird-audiotools/blob/961786aa1a9d628cca0c0486e5885a457fe70c1a/audiotools/metrics/distance.py
"""
def __init__(
self,
scaling: int = True,
reduction: str = "mean",
zero_mean: int = True,
clip_min: int = None,
weight: float = 1.0,
):
self.scaling = scaling
self.reduction = reduction
self.zero_mean = zero_mean
self.clip_min = clip_min
self.weight = weight
super().__init__()
def forward(self, x: AudioSignal, y: AudioSignal):
eps = 1e-8
# nb, nc, nt
if isinstance(x, AudioSignal):
references = x.audio_data
estimates = y.audio_data
else:
references = x
estimates = y
nb = references.shape[0]
references = references.reshape(nb, 1, -1).permute(0, 2, 1)
estimates = estimates.reshape(nb, 1, -1).permute(0, 2, 1)
# samples now on axis 1
if self.zero_mean:
mean_reference = references.mean(dim=1, keepdim=True)
mean_estimate = estimates.mean(dim=1, keepdim=True)
else:
mean_reference = 0
mean_estimate = 0
_references = references - mean_reference
_estimates = estimates - mean_estimate
references_projection = (_references**2).sum(dim=-2) + eps
references_on_estimates = (_estimates * _references).sum(dim=-2) + eps
scale = (
(references_on_estimates / references_projection).unsqueeze(1)
if self.scaling
else 1
)
e_true = scale * _references
e_res = _estimates - e_true
signal = (e_true**2).sum(dim=1)
noise = (e_res**2).sum(dim=1)
sdr = -10 * torch.log10(signal / noise + eps)
if self.clip_min is not None:
sdr = torch.clamp(sdr, min=self.clip_min)
if self.reduction == "mean":
sdr = sdr.mean()
elif self.reduction == "sum":
sdr = sdr.sum()
return sdr
class MultiScaleSTFTLoss(nn.Module):
"""Computes the multi-scale STFT loss from [1].
Parameters
----------
window_lengths : List[int], optional
Length of each window of each STFT, by default [2048, 512]
loss_fn : typing.Callable, optional
How to compare each loss, by default nn.L1Loss()
clamp_eps : float, optional
Clamp on the log magnitude, below, by default 1e-5
mag_weight : float, optional
Weight of raw magnitude portion of loss, by default 1.0
log_weight : float, optional
Weight of log magnitude portion of loss, by default 1.0
pow : float, optional
Power to raise magnitude to before taking log, by default 2.0
weight : float, optional
Weight of this loss, by default 1.0
match_stride : bool, optional
Whether to match the stride of convolutional layers, by default False
References
----------
1. Engel, Jesse, Chenjie Gu, and Adam Roberts.
"DDSP: Differentiable Digital Signal Processing."
International Conference on Learning Representations. 2019.
Implementation copied from: https://github.com/descriptinc/lyrebird-audiotools/blob/961786aa1a9d628cca0c0486e5885a457fe70c1a/audiotools/metrics/spectral.py
"""
def __init__(
self,
window_lengths: List[int] = [2048, 512],
loss_fn: typing.Callable = nn.L1Loss(),
clamp_eps: float = 1e-5,
mag_weight: float = 1.0,
log_weight: float = 1.0,
pow: float = 2.0,
weight: float = 1.0,
match_stride: bool = False,
window_type: str = None,
):
super().__init__()
self.stft_params = [
STFTParams(
window_length=w,
hop_length=w // 4,
match_stride=match_stride,
window_type=window_type,
)
for w in window_lengths
]
self.loss_fn = loss_fn
self.log_weight = log_weight
self.mag_weight = mag_weight
self.clamp_eps = clamp_eps
self.weight = weight
self.pow = pow
def forward(self, x: AudioSignal, y: AudioSignal):
"""Computes multi-scale STFT between an estimate and a reference
signal.
Parameters
----------
x : AudioSignal
Estimate signal
y : AudioSignal
Reference signal
Returns
-------
torch.Tensor
Multi-scale STFT loss.
"""
loss = 0.0
for s in self.stft_params:
x.stft(s.window_length, s.hop_length, s.window_type)
y.stft(s.window_length, s.hop_length, s.window_type)
loss += self.log_weight * self.loss_fn(
x.magnitude.clamp(self.clamp_eps).pow(self.pow).log10(),
y.magnitude.clamp(self.clamp_eps).pow(self.pow).log10(),
)
loss += self.mag_weight * self.loss_fn(x.magnitude, y.magnitude)
return loss
class MelSpectrogramLoss(nn.Module):
"""Compute distance between mel spectrograms. Can be used
in a multi-scale way.
Parameters
----------
n_mels : List[int]
Number of mels per STFT, by default [150, 80],
window_lengths : List[int], optional
Length of each window of each STFT, by default [2048, 512]
loss_fn : typing.Callable, optional
How to compare each loss, by default nn.L1Loss()
clamp_eps : float, optional
Clamp on the log magnitude, below, by default 1e-5
mag_weight : float, optional
Weight of raw magnitude portion of loss, by default 1.0
log_weight : float, optional
Weight of log magnitude portion of loss, by default 1.0
pow : float, optional
Power to raise magnitude to before taking log, by default 2.0
weight : float, optional
Weight of this loss, by default 1.0
match_stride : bool, optional
Whether to match the stride of convolutional layers, by default False
Implementation copied from: https://github.com/descriptinc/lyrebird-audiotools/blob/961786aa1a9d628cca0c0486e5885a457fe70c1a/audiotools/metrics/spectral.py
"""
def __init__(
self,
n_mels: List[int] = [150, 80],
window_lengths: List[int] = [2048, 512],
loss_fn: typing.Callable = nn.L1Loss(),
clamp_eps: float = 1e-5,
mag_weight: float = 1.0,
log_weight: float = 1.0,
pow: float = 2.0,
weight: float = 1.0,
match_stride: bool = False,
mel_fmin: List[float] = [0.0, 0.0],
mel_fmax: List[float] = [None, None],
window_type: str = None,
):
super().__init__()
self.stft_params = [
STFTParams(
window_length=w,
hop_length=w // 4,
match_stride=match_stride,
window_type=window_type,
)
for w in window_lengths
]
self.n_mels = n_mels
self.loss_fn = loss_fn
self.clamp_eps = clamp_eps
self.log_weight = log_weight
self.mag_weight = mag_weight
self.weight = weight
self.mel_fmin = mel_fmin
self.mel_fmax = mel_fmax
self.pow = pow
def forward(self, x: AudioSignal, y: AudioSignal):
"""Computes mel loss between an estimate and a reference
signal.
Parameters
----------
x : AudioSignal
Estimate signal
y : AudioSignal
Reference signal
Returns
-------
torch.Tensor
Mel loss.
"""
loss = 0.0
for n_mels, fmin, fmax, s in zip(
self.n_mels, self.mel_fmin, self.mel_fmax, self.stft_params
):
kwargs = {
"window_length": s.window_length,
"hop_length": s.hop_length,
"window_type": s.window_type,
}
x_mels = x.mel_spectrogram(n_mels, mel_fmin=fmin, mel_fmax=fmax, **kwargs)
y_mels = y.mel_spectrogram(n_mels, mel_fmin=fmin, mel_fmax=fmax, **kwargs)
loss += self.log_weight * self.loss_fn(
x_mels.clamp(self.clamp_eps).pow(self.pow).log10(),
y_mels.clamp(self.clamp_eps).pow(self.pow).log10(),
)
loss += self.mag_weight * self.loss_fn(x_mels, y_mels)
return loss
class GANLoss(nn.Module):
"""
Computes a discriminator loss, given a discriminator on
generated waveforms/spectrograms compared to ground truth
waveforms/spectrograms. Computes the loss for both the
discriminator and the generator in separate functions.
"""
def __init__(self, discriminator):
super().__init__()
self.discriminator = discriminator
def forward(self, fake, real):
d_fake = self.discriminator(fake.audio_data)
d_real = self.discriminator(real.audio_data)
return d_fake, d_real
def discriminator_loss(self, fake, real):
d_fake, d_real = self.forward(fake.clone().detach(), real)
loss_d = 0
for x_fake, x_real in zip(d_fake, d_real):
loss_d += torch.mean(x_fake[-1] ** 2)
loss_d += torch.mean((1 - x_real[-1]) ** 2)
return loss_d
def generator_loss(self, fake, real):
d_fake, d_real = self.forward(fake, real)
loss_g = 0
for x_fake in d_fake:
loss_g += torch.mean((1 - x_fake[-1]) ** 2)
loss_feature = 0
for i in range(len(d_fake)):
for j in range(len(d_fake[i]) - 1):
loss_feature += F.l1_loss(d_fake[i][j], d_real[i][j].detach())
return loss_g, loss_feature