Oysiyl's picture
Create app.py
5aa8a86 verified
raw
history blame
2.29 kB
import os
import gradio as gr
from PIL import Image
from transformers import AutoProcessor, AutoModelForCausalLM
#workaround for unnecessary flash_attn requirement
from unittest.mock import patch
from transformers.dynamic_module_utils import get_imports
import numpy as np
def fixed_get_imports(filename: str | os.PathLike) -> list[str]:
if not str(filename).endswith("modeling_florence2.py"):
return get_imports(filename)
imports = get_imports(filename)
imports.remove("flash_attn")
return imports
with patch("transformers.dynamic_module_utils.get_imports", fixed_get_imports): #workaround for unnecessary flash_attn requirement
model = AutoModelForCausalLM.from_pretrained("Oysiyl/Florence-2-FT-OCR-Cauldron-IAM", attn_implementation="sdpa", trust_remote_code=True)
processor = AutoProcessor.from_pretrained("Oysiyl/Florence-2-FT-OCR-Cauldron-IAM", trust_remote_code=True)
prompt = "OCR"
def predict(im):
composite_image = Image.fromarray(im['composite'].astype(np.uint8)).convert("RGBA")
background_image = Image.new("RGBA", composite_image.size, (255, 255, 255, 255))
image = Image.alpha_composite(background_image, composite_image).convert("RGB")
inputs = processor(text=prompt, images=image, return_tensors="pt")
generated_ids = model.generate(
input_ids=inputs["input_ids"],
pixel_values=inputs["pixel_values"],
max_new_tokens=1024,
do_sample=False,
num_beams=3
)
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
parsed_answer = processor.post_process_generation(generated_text, task=prompt, image_size=(image.width, image.height))
return parsed_answer[prompt]
sketchpad = gr.ImageEditor(label="Draw something or upload an image")
interface = gr.Interface(
predict,
inputs=sketchpad,
outputs='text',
theme='gradio/monochrome',
title="Handwritten Recognition using Florence 2 model finetuned on IAM subset from HuggingFace Cauldron dataset",
description="<p style='text-align: center'>Draw a text or upload an image with handwritten notes and let's model try to guess the text!</p>",
article = "<p style='text-align: center'>Handwritten Text Recognition | Demo Model</p>")
interface.launch(debug=True)