Spaces:
Sleeping
Sleeping
""" | |
Augmenter Recipes: | |
=================== | |
Transformations and constraints can be used for simple NLP data augmentations. Here is a list of recipes for NLP data augmentations | |
""" | |
import random | |
from textattack.constraints.pre_transformation import ( | |
RepeatModification, | |
StopwordModification, | |
) | |
from textattack.constraints.semantics.sentence_encoders import UniversalSentenceEncoder | |
from . import Augmenter | |
DEFAULT_CONSTRAINTS = [RepeatModification(), StopwordModification()] | |
class EasyDataAugmenter(Augmenter): | |
"""An implementation of Easy Data Augmentation, which combines: | |
- WordNet synonym replacement | |
- Randomly replace words with their synonyms. | |
- Word deletion | |
- Randomly remove words from the sentence. | |
- Word order swaps | |
- Randomly swap the position of words in the sentence. | |
- Random synonym insertion | |
- Insert a random synonym of a random word at a random location. | |
in one augmentation method. | |
"EDA: Easy Data Augmentation Techniques for Boosting Performance on Text Classification Tasks" (Wei and Zou, 2019) | |
https://arxiv.org/abs/1901.11196 | |
""" | |
def __init__(self, pct_words_to_swap=0.1, transformations_per_example=4): | |
assert 0.0 <= pct_words_to_swap <= 1.0, "pct_words_to_swap must be in [0., 1.]" | |
assert ( | |
transformations_per_example > 0 | |
), "transformations_per_example must be a positive integer" | |
self.pct_words_to_swap = pct_words_to_swap | |
self.transformations_per_example = transformations_per_example | |
n_aug_each = max(transformations_per_example // 4, 1) | |
self.synonym_replacement = WordNetAugmenter( | |
pct_words_to_swap=pct_words_to_swap, | |
transformations_per_example=n_aug_each, | |
) | |
self.random_deletion = DeletionAugmenter( | |
pct_words_to_swap=pct_words_to_swap, | |
transformations_per_example=n_aug_each, | |
) | |
self.random_swap = SwapAugmenter( | |
pct_words_to_swap=pct_words_to_swap, | |
transformations_per_example=n_aug_each, | |
) | |
self.random_insertion = SynonymInsertionAugmenter( | |
pct_words_to_swap=pct_words_to_swap, transformations_per_example=n_aug_each | |
) | |
def augment(self, text): | |
augmented_text = [] | |
augmented_text += self.synonym_replacement.augment(text) | |
augmented_text += self.random_deletion.augment(text) | |
augmented_text += self.random_swap.augment(text) | |
augmented_text += self.random_insertion.augment(text) | |
augmented_text = list(set(augmented_text)) | |
random.shuffle(augmented_text) | |
return augmented_text[: self.transformations_per_example] | |
def __repr__(self): | |
return "EasyDataAugmenter" | |
class SwapAugmenter(Augmenter): | |
def __init__(self, **kwargs): | |
from textattack.transformations import WordInnerSwapRandom | |
transformation = WordInnerSwapRandom() | |
super().__init__(transformation, constraints=DEFAULT_CONSTRAINTS, **kwargs) | |
class SynonymInsertionAugmenter(Augmenter): | |
def __init__(self, **kwargs): | |
from textattack.transformations import WordInsertionRandomSynonym | |
transformation = WordInsertionRandomSynonym() | |
super().__init__(transformation, constraints=DEFAULT_CONSTRAINTS, **kwargs) | |
class WordNetAugmenter(Augmenter): | |
"""Augments text by replacing with synonyms from the WordNet thesaurus.""" | |
def __init__(self, **kwargs): | |
from textattack.transformations import WordSwapWordNet | |
transformation = WordSwapWordNet() | |
super().__init__(transformation, constraints=DEFAULT_CONSTRAINTS, **kwargs) | |
class DeletionAugmenter(Augmenter): | |
def __init__(self, **kwargs): | |
from textattack.transformations import WordDeletion | |
transformation = WordDeletion() | |
super().__init__(transformation, constraints=DEFAULT_CONSTRAINTS, **kwargs) | |
class EmbeddingAugmenter(Augmenter): | |
"""Augments text by transforming words with their embeddings.""" | |
def __init__(self, **kwargs): | |
from textattack.transformations import WordSwapEmbedding | |
transformation = WordSwapEmbedding(max_candidates=50) | |
from textattack.constraints.semantics import WordEmbeddingDistance | |
constraints = DEFAULT_CONSTRAINTS + [WordEmbeddingDistance(min_cos_sim=0.8)] | |
super().__init__(transformation, constraints=constraints, **kwargs) | |
class CharSwapAugmenter(Augmenter): | |
"""Augments words by swapping characters out for other characters.""" | |
def __init__(self, **kwargs): | |
from textattack.transformations import ( | |
CompositeTransformation, | |
WordSwapNeighboringCharacterSwap, | |
WordSwapRandomCharacterDeletion, | |
WordSwapRandomCharacterInsertion, | |
WordSwapRandomCharacterSubstitution, | |
) | |
transformation = CompositeTransformation( | |
[ | |
# (1) Swap: Swap two adjacent letters in the word. | |
WordSwapNeighboringCharacterSwap(), | |
# (2) Substitution: Substitute a letter in the word with a random letter. | |
WordSwapRandomCharacterSubstitution(), | |
# (3) Deletion: Delete a random letter from the word. | |
WordSwapRandomCharacterDeletion(), | |
# (4) Insertion: Insert a random letter in the word. | |
WordSwapRandomCharacterInsertion(), | |
] | |
) | |
super().__init__(transformation, constraints=DEFAULT_CONSTRAINTS, **kwargs) | |
class CheckListAugmenter(Augmenter): | |
"""Augments words by using the transformation methods provided by CheckList | |
INV testing, which combines: | |
- Name Replacement | |
- Location Replacement | |
- Number Alteration | |
- Contraction/Extension | |
"Beyond Accuracy: Behavioral Testing of NLP models with CheckList" (Ribeiro et al., 2020) | |
https://arxiv.org/abs/2005.04118 | |
""" | |
def __init__(self, **kwargs): | |
from textattack.transformations import ( | |
CompositeTransformation, | |
WordSwapChangeLocation, | |
WordSwapChangeName, | |
WordSwapChangeNumber, | |
WordSwapContract, | |
WordSwapExtend, | |
) | |
transformation = CompositeTransformation( | |
[ | |
WordSwapChangeNumber(), | |
WordSwapChangeLocation(), | |
WordSwapChangeName(), | |
WordSwapExtend(), | |
WordSwapContract(), | |
] | |
) | |
constraints = [DEFAULT_CONSTRAINTS[0]] | |
super().__init__(transformation, constraints=constraints, **kwargs) | |
class CLAREAugmenter(Augmenter): | |
"""Li, Zhang, Peng, Chen, Brockett, Sun, Dolan. | |
"Contextualized Perturbation for Textual Adversarial Attack" (Li et al., 2020) | |
https://arxiv.org/abs/2009.07502 | |
CLARE builds on a pre-trained masked language model and modifies the inputs in a contextaware manner. | |
We propose three contextualized perturbations, Replace, Insert and Merge, allowing for generating outputs | |
of varied lengths. | |
""" | |
def __init__( | |
self, model="distilroberta-base", tokenizer="distilroberta-base", **kwargs | |
): | |
import transformers | |
from textattack.transformations import ( | |
CompositeTransformation, | |
WordInsertionMaskedLM, | |
WordMergeMaskedLM, | |
WordSwapMaskedLM, | |
) | |
shared_masked_lm = transformers.AutoModelForCausalLM.from_pretrained(model) | |
shared_tokenizer = transformers.AutoTokenizer.from_pretrained(tokenizer) | |
transformation = CompositeTransformation( | |
[ | |
WordSwapMaskedLM( | |
method="bae", | |
masked_language_model=shared_masked_lm, | |
tokenizer=shared_tokenizer, | |
max_candidates=50, | |
min_confidence=5e-4, | |
), | |
WordInsertionMaskedLM( | |
masked_language_model=shared_masked_lm, | |
tokenizer=shared_tokenizer, | |
max_candidates=50, | |
min_confidence=0.0, | |
), | |
WordMergeMaskedLM( | |
masked_language_model=shared_masked_lm, | |
tokenizer=shared_tokenizer, | |
max_candidates=50, | |
min_confidence=5e-3, | |
), | |
] | |
) | |
use_constraint = UniversalSentenceEncoder( | |
threshold=0.7, | |
metric="cosine", | |
compare_against_original=True, | |
window_size=15, | |
skip_text_shorter_than_window=True, | |
) | |
constraints = DEFAULT_CONSTRAINTS + [use_constraint] | |
super().__init__(transformation, constraints=constraints, **kwargs) | |
class BackTranslationAugmenter(Augmenter): | |
"""Sentence level augmentation that uses MarianMTModel to back-translate. | |
https://huggingface.co/transformers/model_doc/marian.html | |
""" | |
def __init__(self, **kwargs): | |
from textattack.transformations.sentence_transformations import BackTranslation | |
transformation = BackTranslation(chained_back_translation=5) | |
super().__init__(transformation, **kwargs) | |