Spaces:
Runtime error
Runtime error
Update app.py
#1
by
ahuang11
- opened
app.py
CHANGED
@@ -1,24 +1,32 @@
|
|
1 |
-
import aiohttp
|
2 |
import io
|
3 |
import random
|
4 |
import panel as pn
|
|
|
5 |
|
6 |
from PIL import Image
|
7 |
|
8 |
from transformers import CLIPProcessor, CLIPModel
|
9 |
from typing import List, Tuple
|
10 |
|
11 |
-
pn.extension(design=
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
async def random_url(_):
|
14 |
-
|
15 |
-
|
16 |
-
"https://api.thedogapi.com/v1/images/search"
|
17 |
-
])
|
18 |
async with aiohttp.ClientSession() as session:
|
19 |
async with session.get(api_url) as resp:
|
20 |
return (await resp.json())[0]["url"]
|
21 |
|
|
|
22 |
@pn.cache
|
23 |
def load_processor_model(
|
24 |
processor_name: str, model_name: str
|
@@ -54,33 +62,37 @@ async def process_inputs(class_names: List[str], image_url: str):
|
|
54 |
High level function that takes in the user inputs and returns the
|
55 |
classification results as panel objects.
|
56 |
"""
|
|
|
57 |
if not image_url:
|
58 |
-
yield
|
59 |
return
|
60 |
-
|
|
|
61 |
pil_img = await open_image_url(image_url)
|
62 |
-
img = pn.pane.Image(pil_img, height=400, align=
|
63 |
|
64 |
class_items = class_names.split(",")
|
65 |
class_likelihoods = get_similarity_scores(class_items, pil_img)
|
66 |
|
67 |
# build the results column
|
68 |
-
results = pn.Column("
|
69 |
|
70 |
for class_item, class_likelihood in zip(class_items, class_likelihoods):
|
71 |
row_label = pn.widgets.StaticText(
|
72 |
-
name=class_item.strip(), value=f"{class_likelihood:.2%}", align=
|
73 |
)
|
74 |
row_bar = pn.indicators.Progress(
|
75 |
value=int(class_likelihood * 100),
|
76 |
sizing_mode="stretch_width",
|
77 |
bar_color="secondary",
|
78 |
margin=(0, 10),
|
79 |
-
design=pn.theme.Material
|
80 |
)
|
81 |
results.append(pn.Column(row_label, row_bar))
|
|
|
82 |
yield results
|
83 |
|
|
|
84 |
# create widgets
|
85 |
randomize_url = pn.widgets.Button(name="Randomize URL", align="end")
|
86 |
|
@@ -95,25 +107,36 @@ class_names = pn.widgets.TextInput(
|
|
95 |
)
|
96 |
|
97 |
input_widgets = pn.Column(
|
98 |
-
"
|
99 |
pn.Row(image_url, randomize_url),
|
100 |
class_names,
|
101 |
)
|
102 |
|
103 |
# add interactivity
|
104 |
-
interactive_result = pn.
|
105 |
-
process_inputs, image_url=image_url, class_names=class_names
|
|
|
106 |
)
|
107 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
# create dashboard
|
109 |
main = pn.WidgetBox(
|
110 |
input_widgets,
|
111 |
interactive_result,
|
|
|
112 |
)
|
113 |
|
|
|
114 |
pn.template.BootstrapTemplate(
|
115 |
-
title=
|
116 |
main=main,
|
117 |
main_max_width="min(50%, 698px)",
|
118 |
header_background="#F08080",
|
119 |
-
).servable(title=
|
|
|
|
|
1 |
import io
|
2 |
import random
|
3 |
import panel as pn
|
4 |
+
import aiohttp
|
5 |
|
6 |
from PIL import Image
|
7 |
|
8 |
from transformers import CLIPProcessor, CLIPModel
|
9 |
from typing import List, Tuple
|
10 |
|
11 |
+
pn.extension(design="bootstrap", sizing_mode="stretch_width")
|
12 |
+
|
13 |
+
ICON_URLS = {
|
14 |
+
"brand-github": "https://github.com/holoviz/panel",
|
15 |
+
"brand-twitter": "https://twitter.com/Panel_Org",
|
16 |
+
"brand-linkedin": "https://www.linkedin.com/company/panel-org",
|
17 |
+
"message-circle": "https://discourse.holoviz.org/",
|
18 |
+
"brand-discord": "https://discord.gg/AXRHnJU6sP",
|
19 |
+
}
|
20 |
+
|
21 |
|
22 |
async def random_url(_):
|
23 |
+
pet = random.choice(["cat", "dog"])
|
24 |
+
api_url = f"https://api.the{pet}api.com/v1/images/search"
|
|
|
|
|
25 |
async with aiohttp.ClientSession() as session:
|
26 |
async with session.get(api_url) as resp:
|
27 |
return (await resp.json())[0]["url"]
|
28 |
|
29 |
+
|
30 |
@pn.cache
|
31 |
def load_processor_model(
|
32 |
processor_name: str, model_name: str
|
|
|
62 |
High level function that takes in the user inputs and returns the
|
63 |
classification results as panel objects.
|
64 |
"""
|
65 |
+
main.disabled = True
|
66 |
if not image_url:
|
67 |
+
yield "##### β οΈ Provide an image URL"
|
68 |
return
|
69 |
+
|
70 |
+
yield "##### β Fetching image and running model..."
|
71 |
pil_img = await open_image_url(image_url)
|
72 |
+
img = pn.pane.Image(pil_img, height=400, align="center")
|
73 |
|
74 |
class_items = class_names.split(",")
|
75 |
class_likelihoods = get_similarity_scores(class_items, pil_img)
|
76 |
|
77 |
# build the results column
|
78 |
+
results = pn.Column("##### π Here are the results!", img)
|
79 |
|
80 |
for class_item, class_likelihood in zip(class_items, class_likelihoods):
|
81 |
row_label = pn.widgets.StaticText(
|
82 |
+
name=class_item.strip(), value=f"{class_likelihood:.2%}", align="center"
|
83 |
)
|
84 |
row_bar = pn.indicators.Progress(
|
85 |
value=int(class_likelihood * 100),
|
86 |
sizing_mode="stretch_width",
|
87 |
bar_color="secondary",
|
88 |
margin=(0, 10),
|
89 |
+
design=pn.theme.Material,
|
90 |
)
|
91 |
results.append(pn.Column(row_label, row_bar))
|
92 |
+
main.disabled = False
|
93 |
yield results
|
94 |
|
95 |
+
|
96 |
# create widgets
|
97 |
randomize_url = pn.widgets.Button(name="Randomize URL", align="end")
|
98 |
|
|
|
107 |
)
|
108 |
|
109 |
input_widgets = pn.Column(
|
110 |
+
"##### π Click randomize or paste a URL to start classifying!",
|
111 |
pn.Row(image_url, randomize_url),
|
112 |
class_names,
|
113 |
)
|
114 |
|
115 |
# add interactivity
|
116 |
+
interactive_result = pn.panel(
|
117 |
+
pn.bind(process_inputs, image_url=image_url, class_names=class_names),
|
118 |
+
height=600,
|
119 |
)
|
120 |
|
121 |
+
# add footer
|
122 |
+
footer_row = pn.Row(pn.Spacer(), align="center")
|
123 |
+
for icon, url in ICON_URLS.items():
|
124 |
+
href_button = pn.widgets.Button(icon=icon, width=35, height=35)
|
125 |
+
href_button.js_on_click(code=f"window.open('{url}')")
|
126 |
+
footer_row.append(href_button)
|
127 |
+
footer_row.append(pn.Spacer())
|
128 |
+
|
129 |
# create dashboard
|
130 |
main = pn.WidgetBox(
|
131 |
input_widgets,
|
132 |
interactive_result,
|
133 |
+
footer_row,
|
134 |
)
|
135 |
|
136 |
+
title = "Panel Demo - Image Classification"
|
137 |
pn.template.BootstrapTemplate(
|
138 |
+
title=title,
|
139 |
main=main,
|
140 |
main_max_width="min(50%, 698px)",
|
141 |
header_background="#F08080",
|
142 |
+
).servable(title=title)
|