Spaces:
Sleeping
Sleeping
Upload app.py
#1
by
Supagan
- opened
app.py
CHANGED
@@ -1,49 +1,10 @@
|
|
1 |
import gradio as gr
|
2 |
import numpy
|
3 |
-
import librosa
|
4 |
-
from pydub import *
|
5 |
-
import fastbook
|
6 |
-
from fastbook import *
|
7 |
import pathlib
|
8 |
-
path = Path()
|
9 |
-
model = load_learner(path/"thedrum.pkl", cpu=True)
|
10 |
|
11 |
-
def
|
12 |
-
|
13 |
-
|
14 |
-
b=0
|
15 |
-
all=[]
|
16 |
-
countfname=1
|
17 |
-
for i in range(int(ti*beat*2)):
|
18 |
-
sound = AudioSegment.from_mp3(audio)
|
19 |
-
StrtSec = sts
|
20 |
-
EndSec = beat*(i+1)/2
|
21 |
-
StrtTime = StrtSec*1000
|
22 |
-
EndTime = EndSec*1000
|
23 |
-
extract = sound[StrtTime:EndTime]
|
24 |
-
extract.export("Half.wav", format="wav")
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
x,y = librosa.load('Half.wav')
|
29 |
-
plt.figure(figsize=(12,4))
|
30 |
-
a = librosa.feature.melspectrogram(y=x,sr=y,n_mels=550)
|
31 |
-
b = librosa.power_to_db(a,ref=np.max)
|
32 |
-
librosa.display.specshow(b,sr=y, x_axis='time', y_axis='mel')
|
33 |
-
plt.savefig(f'{countfname}')
|
34 |
-
wit = model.predict(f'{countfname}.png')
|
35 |
-
all.append(wit[0])
|
36 |
-
countfname+=1
|
37 |
-
|
38 |
-
sts=EndSec
|
39 |
-
return all
|
40 |
-
|
41 |
-
def transcribe(audio):
|
42 |
-
x,y = librosa.load(audio)
|
43 |
-
ti = librosa.get_duration(y=x,sr=y)
|
44 |
-
beat = 1
|
45 |
-
text = play(x,y,ti,beat,audio)
|
46 |
-
return text
|
47 |
|
48 |
gr.Interface(
|
49 |
fn=transcribe,
|
|
|
1 |
import gradio as gr
|
2 |
import numpy
|
|
|
|
|
|
|
|
|
3 |
import pathlib
|
|
|
|
|
4 |
|
5 |
+
def transcribe():
|
6 |
+
|
7 |
+
return "drum sheet"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
gr.Interface(
|
10 |
fn=transcribe,
|