Files changed (1) hide show
  1. app.py +3 -42
app.py CHANGED
@@ -1,49 +1,10 @@
1
  import gradio as gr
2
  import numpy
3
- import librosa
4
- from pydub import *
5
- import fastbook
6
- from fastbook import *
7
  import pathlib
8
- path = Path()
9
- model = load_learner(path/"thedrum.pkl", cpu=True)
10
 
11
- def play(x,y,ti,beat,audio):
12
-
13
- sts=0
14
- b=0
15
- all=[]
16
- countfname=1
17
- for i in range(int(ti*beat*2)):
18
- sound = AudioSegment.from_mp3(audio)
19
- StrtSec = sts
20
- EndSec = beat*(i+1)/2
21
- StrtTime = StrtSec*1000
22
- EndTime = EndSec*1000
23
- extract = sound[StrtTime:EndTime]
24
- extract.export("Half.wav", format="wav")
25
-
26
-
27
-
28
- x,y = librosa.load('Half.wav')
29
- plt.figure(figsize=(12,4))
30
- a = librosa.feature.melspectrogram(y=x,sr=y,n_mels=550)
31
- b = librosa.power_to_db(a,ref=np.max)
32
- librosa.display.specshow(b,sr=y, x_axis='time', y_axis='mel')
33
- plt.savefig(f'{countfname}')
34
- wit = model.predict(f'{countfname}.png')
35
- all.append(wit[0])
36
- countfname+=1
37
-
38
- sts=EndSec
39
- return all
40
-
41
- def transcribe(audio):
42
- x,y = librosa.load(audio)
43
- ti = librosa.get_duration(y=x,sr=y)
44
- beat = 1
45
- text = play(x,y,ti,beat,audio)
46
- return text
47
 
48
  gr.Interface(
49
  fn=transcribe,
 
1
  import gradio as gr
2
  import numpy
 
 
 
 
3
  import pathlib
 
 
4
 
5
+ def transcribe():
6
+
7
+ return "drum sheet"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8
 
9
  gr.Interface(
10
  fn=transcribe,