File size: 11,062 Bytes
3ec9224
5be8df6
5db4902
5be8df6
5db4902
5be8df6
6e32d35
 
5db4902
5be8df6
 
327ecf1
1ef8d7c
 
aa98840
1ef8d7c
246e6b5
5be8df6
 
9bf736d
5be8df6
246e6b5
 
 
 
 
 
 
37ae113
b1ec9ac
5be8df6
4c9b24b
5be8df6
 
 
 
 
 
246e6b5
 
 
5be8df6
 
 
1ef8d7c
246e6b5
1ef8d7c
5be8df6
 
 
1ef8d7c
246e6b5
5be8df6
 
 
 
 
246e6b5
 
 
 
 
 
 
 
 
 
5be8df6
246e6b5
 
 
 
 
 
 
 
 
 
 
 
 
 
5be8df6
eb94a8f
5be8df6
 
9733941
5be8df6
 
246e6b5
5be8df6
 
 
 
 
 
9733941
138ca2e
5be8df6
 
00bd139
5be8df6
9bf736d
 
32a58be
aa98840
9bf736d
989bff5
08108c1
 
fa7cc51
6e8daa8
fa7cc51
6e8daa8
9bf736d
 
 
 
 
 
5be8df6
 
 
1ef8d7c
5be8df6
1ef8d7c
5be8df6
 
 
00bd139
 
5be8df6
 
 
 
 
 
 
 
00bd139
5be8df6
 
9733941
04361a6
 
9733941
 
 
8bef1bd
9733941
 
8bef1bd
5be8df6
9733941
8bef1bd
5be8df6
 
 
3ca2785
00bd139
1ef8d7c
5be8df6
 
246e6b5
6f396af
51d2a09
246e6b5
 
 
51d2a09
 
246e6b5
51d2a09
 
246e6b5
a25f0eb
246e6b5
 
 
 
5be8df6
51d2a09
246e6b5
a25f0eb
246e6b5
 
 
 
 
5be8df6
51d2a09
14155e5
9733941
246e6b5
 
 
 
 
 
 
 
 
5be8df6
 
246e6b5
 
1ef8d7c
246e6b5
 
 
 
 
9733941
5be8df6
 
246e6b5
 
 
9733941
246e6b5
 
 
9733941
246e6b5
 
 
9733941
323ccbe
5be8df6
 
246e6b5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
import gradio as gr
import os
from langchain_community.document_loaders import PyPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.vectorstores import Chroma
from langchain.chains import ConversationalRetrievalChain
#from langchain_community.embeddings import HuggingFaceEmbeddings 
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_community.llms import HuggingFacePipeline
from langchain.chains import ConversationChain
from langchain.memory import ConversationBufferMemory
import spaces
from pathlib import Path
import chromadb
from unidecode import unidecode

from transformers import AutoTokenizer, AutoModelForCausalLM
import transformers
import torch
import re

# List of models
list_llm = [
    "mistralai/Mistral-7B-Instruct-v0.2",
    "HuggingFaceH4/zephyr-7b-beta",
    "microsoft/phi-2",
    "TinyLlama/TinyLlama-1.1B-Chat-v1.0",
    # Add more GPU-compatible models here
]
list_llm_simple = [os.path.basename(llm) for llm in list_llm]

@spaces.GPU
def load_doc(list_file_path, chunk_size, chunk_overlap):
    loaders = [PyPDFLoader(x) for x in list_file_path]
    pages = []
    for loader in loaders:
        pages.extend(loader.load())
    text_splitter = RecursiveCharacterTextSplitter(
        chunk_size=chunk_size, 
        chunk_overlap=chunk_overlap
    )
    doc_splits = text_splitter.split_documents(pages)
    return doc_splits

def create_db(splits, collection_name):
    embedding = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2", device="cuda")
    new_client = chromadb.EphemeralClient()
    vectordb = Chroma.from_documents(
        documents=splits,
        embedding=embedding,
        client=new_client,
        collection_name=collection_name
    )
    return vectordb

def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
    progress(0.1, desc="Initializing HF tokenizer...")
    tokenizer = AutoTokenizer.from_pretrained(llm_model)
    
    progress(0.3, desc="Loading model...")
    try:
        model = AutoModelForCausalLM.from_pretrained(llm_model, torch_dtype=torch.float16, device_map="auto")
    except RuntimeError as e:
        if "CUDA out of memory" in str(e):
            raise gr.Error("GPU memory exceeded. Try a smaller model or reduce batch size.")
        else:
            raise e
    
    progress(0.5, desc="Initializing HF pipeline...")
    pipeline = transformers.pipeline(
        "text-generation",
        model=model,
        tokenizer=tokenizer,
        torch_dtype=torch.float16,
        device_map="auto",
        max_new_tokens=max_tokens,
        do_sample=True,
        top_k=top_k,
        num_return_sequences=1,
        eos_token_id=tokenizer.eos_token_id
    )
    llm = HuggingFacePipeline(pipeline=pipeline, model_kwargs={'temperature': temperature})
    
    progress(0.75, desc="Defining buffer memory...")
    memory = ConversationBufferMemory(
        memory_key="chat_history",
        output_key='answer',
        return_messages=True
    )
    retriever = vector_db.as_retriever()
    progress(0.8, desc="Defining retrieval chain...")
    qa_chain = ConversationalRetrievalChain.from_llm(
        llm,
        retriever=retriever,
        chain_type="stuff", 
        memory=memory,
        return_source_documents=True,
        verbose=False,
    )
    progress(0.9, desc="Done!")
    return qa_chain

def create_collection_name(filepath):
    collection_name = Path(filepath).stem
    collection_name = collection_name.replace(" ","-") 
    collection_name = unidecode(collection_name)
    collection_name = re.sub('[^A-Za-z0-9]+', '-', collection_name)
    collection_name = collection_name[:50]
    if len(collection_name) < 3:
        collection_name = collection_name + 'xyz'
    if not collection_name[0].isalnum():
        collection_name = 'A' + collection_name[1:]
    if not collection_name[-1].isalnum():
        collection_name = collection_name[:-1] + 'Z'
    return collection_name

def initialize_database(list_file_obj, chunk_size, chunk_overlap, progress=gr.Progress()):
    list_file_path = [x.name for x in list_file_obj if x is not None]
    progress(0.1, desc="Creating collection name...")
    collection_name = create_collection_name(list_file_path[0])
    progress(0.25, desc="Loading document...")
    doc_splits = load_doc(list_file_path, chunk_size, chunk_overlap)
    progress(0.5, desc="Generating vector database...")
    vector_db = create_db(doc_splits, collection_name)
    progress(0.9, desc="Done!")
    return vector_db, collection_name, "Complete!"

def initialize_LLM(llm_option, llm_temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
    llm_name = list_llm[llm_option]
    qa_chain = initialize_llmchain(llm_name, llm_temperature, max_tokens, top_k, vector_db, progress)
    return qa_chain, "Complete!"

def format_chat_history(message, chat_history):
    formatted_chat_history = []
    for user_message, bot_message in chat_history:
        formatted_chat_history.append(f"User: {user_message}")
        formatted_chat_history.append(f"Assistant: {bot_message}")
    return formatted_chat_history

def conversation(qa_chain, message, history):
    formatted_chat_history = format_chat_history(message, history)
    response = qa_chain({"question": message, "chat_history": formatted_chat_history})
    response_answer = response["answer"]
    if response_answer.find("Helpful Answer:") != -1:
        response_answer = response_answer.split("Helpful Answer:")[-1]
    response_sources = response["source_documents"]
    response_source1 = response_sources[0].page_content.strip()
    response_source2 = response_sources[1].page_content.strip()
    response_source3 = response_sources[2].page_content.strip()
    response_source1_page = response_sources[0].metadata["page"] + 1
    response_source2_page = response_sources[1].metadata["page"] + 1
    response_source3_page = response_sources[2].metadata["page"] + 1
    
    new_history = history + [(message, response_answer)]
    return qa_chain, gr.update(value=""), new_history, response_source1, response_source1_page, response_source2, response_source2_page, response_source3, response_source3_page

def demo():
    with gr.Blocks(theme="base") as demo:
        vector_db = gr.State()
        qa_chain = gr.State()
        collection_name = gr.State()
        
        gr.Markdown(
        """<center><h2>GPU-Accelerated PDF-based Chatbot</center></h2>
        <h3>Ask any questions about your PDF documents</h3>""")
        gr.Markdown(
        """<b>Note:</b> This AI assistant uses GPU acceleration for faster processing. 
        It performs retrieval-augmented generation (RAG) from your PDF documents using Langchain and open-source LLMs. 
        The chatbot takes past questions into account and includes document references.""")
        
        with gr.Tab("Step 1 - Upload PDF"):
            document = gr.Files(height=100, file_count="multiple", file_types=["pdf"], interactive=True, label="Upload your PDF documents (single or multiple)")
        
        with gr.Tab("Step 2 - Process document"):
            db_btn = gr.Radio(["ChromaDB"], label="Vector database type", value = "ChromaDB", type="index", info="Choose your vector database")
            with gr.Accordion("Advanced options - Document text splitter", open=False):
                slider_chunk_size = gr.Slider(minimum = 100, maximum = 1000, value=600, step=20, label="Chunk size", info="Chunk size", interactive=True)
                slider_chunk_overlap = gr.Slider(minimum = 10, maximum = 200, value=40, step=10, label="Chunk overlap", info="Chunk overlap", interactive=True)
            db_progress = gr.Textbox(label="Vector database initialization", value="None")
            db_btn = gr.Button("Generate vector database")
            
        with gr.Tab("Step 3 - Initialize QA chain"):
            llm_btn = gr.Radio(list_llm_simple, label="LLM models", value = list_llm_simple[0], type="index", info="Choose your LLM model")
            with gr.Accordion("Advanced options - LLM model", open=False):
                slider_temperature = gr.Slider(minimum = 0.01, maximum = 1.0, value=0.7, step=0.1, label="Temperature", info="Model temperature", interactive=True)
                slider_maxtokens = gr.Slider(minimum = 224, maximum = 4096, value=1024, step=32, label="Max Tokens", info="Model max tokens", interactive=True)
                slider_topk = gr.Slider(minimum = 1, maximum = 10, value=3, step=1, label="top-k samples", info="Model top-k samples", interactive=True)
            llm_progress = gr.Textbox(value="None",label="QA chain initialization")
            qachain_btn = gr.Button("Initialize Question Answering chain")

        with gr.Tab("Step 4 - Chatbot"):
            chatbot = gr.Chatbot(height=300)
            with gr.Accordion("Advanced - Document references", open=False):
                doc_source1 = gr.Textbox(label="Reference 1", lines=2, container=True, scale=20)
                source1_page = gr.Number(label="Page", scale=1)
                doc_source2 = gr.Textbox(label="Reference 2", lines=2, container=True, scale=20)
                source2_page = gr.Number(label="Page", scale=1)
                doc_source3 = gr.Textbox(label="Reference 3", lines=2, container=True, scale=20)
                source3_page = gr.Number(label="Page", scale=1)
            msg = gr.Textbox(placeholder="Type message (e.g. 'What is this document about?')", container=True)
            submit_btn = gr.Button("Submit message")
            clear_btn = gr.ClearButton([msg, chatbot], value="Clear conversation")
            
        # Preprocessing events
        db_btn.click(initialize_database, 
            inputs=[document, slider_chunk_size, slider_chunk_overlap], 
            outputs=[vector_db, collection_name, db_progress])
        qachain_btn.click(initialize_LLM, 
            inputs=[llm_btn, slider_temperature, slider_maxtokens, slider_topk, vector_db], 
            outputs=[qa_chain, llm_progress]).then(lambda:[None,"",0,"",0,"",0], 
            inputs=None, 
            outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], 
            queue=False)

        # Chatbot events
        msg.submit(conversation, 
            inputs=[qa_chain, msg, chatbot], 
            outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], 
            queue=False)
        submit_btn.click(conversation, 
            inputs=[qa_chain, msg, chatbot], 
            outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], 
            queue=False)
        clear_btn.click(lambda:[None,"",0,"",0,"",0], 
            inputs=None, 
            outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], 
            queue=False)
    demo.queue().launch(debug=True)

if __name__ == "__main__":
    demo()