Spaces:
Running
Running
File size: 1,474 Bytes
86a83a2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 |
# torchMoji examples
## Initialization
[create_twitter_vocab.py](create_twitter_vocab.py)
Create a new vocabulary from a tsv file.
[tokenize_dataset.py](tokenize_dataset.py)
Tokenize a given dataset using the prebuilt vocabulary.
[vocab_extension.py](vocab_extension.py)
Extend the given vocabulary using dataset-specific words.
[dataset_split.py](dataset_split.py)
Split a given dataset into training, validation and testing.
## Use pretrained model/architecture
[score_texts_emojis.py](score_texts_emojis.py)
Use torchMoji to score texts for emoji distribution.
[text_emojize.py](text_emojize.py)
Use torchMoji to output emoji visualization from a single text input (mapped from `emoji_overview.png`)
```sh
python examples/text_emojize.py --text "I love mom's cooking\!"
# => I love mom's cooking! π π π π β€
```
[encode_texts.py](encode_texts.py)
Use torchMoji to encode the text into 2304-dimensional feature vectors for further modeling/analysis.
## Transfer learning
[finetune_youtube_last.py](finetune_youtube_last.py)
Finetune the model on the SS-Youtube dataset using the 'last' method.
[finetune_insults_chain-thaw.py](finetune_insults_chain-thaw.py)
Finetune the model on the Kaggle insults dataset (from blog post) using the 'chain-thaw' method.
[finetune_semeval_class-avg_f1.py](finetune_semeval_class-avg_f1.py)
Finetune the model on the SemeEval emotion dataset using the 'full' method and evaluate using the class average F1 metric.
|