Spaces:
Runtime error
Runtime error
import math | |
import torch | |
import torch.nn.functional as F | |
from torch import nn | |
from .inference import make_atss_postprocessor | |
from .loss import make_atss_loss_evaluator | |
from .anchor_generator import make_anchor_generator_complex | |
from maskrcnn_benchmark.structures.boxlist_ops import cat_boxlist | |
from maskrcnn_benchmark.layers import Scale, DYReLU, SELayer, ModulatedDeformConv | |
from maskrcnn_benchmark.layers import NaiveSyncBatchNorm2d, FrozenBatchNorm2d | |
from maskrcnn_benchmark.modeling.backbone.fbnet import * | |
class h_sigmoid(nn.Module): | |
def __init__(self, inplace=True, h_max=1): | |
super(h_sigmoid, self).__init__() | |
self.relu = nn.ReLU6(inplace=inplace) | |
self.h_max = h_max | |
def forward(self, x): | |
return self.relu(x + 3) * self.h_max / 6 | |
class BoxCoder(object): | |
def __init__(self, cfg): | |
self.cfg = cfg | |
def encode(self, gt_boxes, anchors): | |
TO_REMOVE = 1 # TODO remove | |
ex_widths = anchors[:, 2] - anchors[:, 0] + TO_REMOVE | |
ex_heights = anchors[:, 3] - anchors[:, 1] + TO_REMOVE | |
ex_ctr_x = (anchors[:, 2] + anchors[:, 0]) / 2 | |
ex_ctr_y = (anchors[:, 3] + anchors[:, 1]) / 2 | |
gt_widths = gt_boxes[:, 2] - gt_boxes[:, 0] + TO_REMOVE | |
gt_heights = gt_boxes[:, 3] - gt_boxes[:, 1] + TO_REMOVE | |
gt_ctr_x = (gt_boxes[:, 2] + gt_boxes[:, 0]) / 2 | |
gt_ctr_y = (gt_boxes[:, 3] + gt_boxes[:, 1]) / 2 | |
wx, wy, ww, wh = (10., 10., 5., 5.) | |
targets_dx = wx * (gt_ctr_x - ex_ctr_x) / ex_widths | |
targets_dy = wy * (gt_ctr_y - ex_ctr_y) / ex_heights | |
targets_dw = ww * torch.log(gt_widths / ex_widths) | |
targets_dh = wh * torch.log(gt_heights / ex_heights) | |
targets = torch.stack((targets_dx, targets_dy, targets_dw, targets_dh), dim=1) | |
return targets | |
def decode(self, preds, anchors): | |
anchors = anchors.to(preds.dtype) | |
TO_REMOVE = 1 # TODO remove | |
widths = anchors[:, 2] - anchors[:, 0] + TO_REMOVE | |
heights = anchors[:, 3] - anchors[:, 1] + TO_REMOVE | |
ctr_x = (anchors[:, 2] + anchors[:, 0]) / 2 | |
ctr_y = (anchors[:, 3] + anchors[:, 1]) / 2 | |
wx, wy, ww, wh = (10., 10., 5., 5.) | |
dx = preds[:, 0::4] / wx | |
dy = preds[:, 1::4] / wy | |
dw = preds[:, 2::4] / ww | |
dh = preds[:, 3::4] / wh | |
# Prevent sending too large values into torch.exp() | |
dw = torch.clamp(dw, max=math.log(1000. / 16)) | |
dh = torch.clamp(dh, max=math.log(1000. / 16)) | |
pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] | |
pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] | |
pred_w = torch.exp(dw) * widths[:, None] | |
pred_h = torch.exp(dh) * heights[:, None] | |
pred_boxes = torch.zeros_like(preds) | |
pred_boxes[:, 0::4] = pred_ctr_x - 0.5 * (pred_w - 1) | |
pred_boxes[:, 1::4] = pred_ctr_y - 0.5 * (pred_h - 1) | |
pred_boxes[:, 2::4] = pred_ctr_x + 0.5 * (pred_w - 1) | |
pred_boxes[:, 3::4] = pred_ctr_y + 0.5 * (pred_h - 1) | |
return pred_boxes | |
class Conv3x3Norm(torch.nn.Module): | |
def __init__(self, | |
in_channels, | |
out_channels, | |
stride, | |
groups=1, | |
deformable=False, | |
bn_type=None): | |
super(Conv3x3Norm, self).__init__() | |
if deformable: | |
self.conv = ModulatedDeformConv(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, | |
groups=groups) | |
else: | |
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, groups=groups) | |
if isinstance(bn_type, (list, tuple)): | |
assert len(bn_type) == 2 | |
assert bn_type[0] == "gn" | |
gn_group = bn_type[1] | |
bn_type = bn_type[0] | |
if bn_type == "bn": | |
bn_op = nn.BatchNorm2d(out_channels) | |
elif bn_type == "sbn": | |
bn_op = nn.SyncBatchNorm(out_channels) | |
elif bn_type == "nsbn": | |
bn_op = NaiveSyncBatchNorm2d(out_channels) | |
elif bn_type == "gn": | |
bn_op = nn.GroupNorm(num_groups=gn_group, num_channels=out_channels) | |
elif bn_type == "af": | |
bn_op = FrozenBatchNorm2d(out_channels) | |
if bn_type is not None: | |
self.bn = bn_op | |
else: | |
self.bn = None | |
def forward(self, input, **kwargs): | |
x = self.conv(input, **kwargs) | |
if self.bn: | |
x = self.bn(x) | |
return x | |
class DyConv(torch.nn.Module): | |
def __init__(self, | |
in_channels=256, | |
out_channels=256, | |
conv_func=nn.Conv2d, | |
use_dyfuse=True, | |
use_dyrelu=False, | |
use_deform=False | |
): | |
super(DyConv, self).__init__() | |
self.DyConv = nn.ModuleList() | |
self.DyConv.append(conv_func(in_channels, out_channels, 1)) | |
self.DyConv.append(conv_func(in_channels, out_channels, 1)) | |
self.DyConv.append(conv_func(in_channels, out_channels, 2)) | |
if use_dyfuse: | |
self.AttnConv = nn.Sequential( | |
nn.AdaptiveAvgPool2d(1), | |
nn.Conv2d(in_channels, 1, kernel_size=1), | |
nn.ReLU(inplace=True)) | |
self.h_sigmoid = h_sigmoid() | |
else: | |
self.AttnConv = None | |
if use_dyrelu: | |
self.relu = DYReLU(in_channels, out_channels) | |
else: | |
self.relu = nn.ReLU() | |
if use_deform: | |
self.offset = nn.Conv2d(in_channels, 27, kernel_size=3, stride=1, padding=1) | |
else: | |
self.offset = None | |
self.init_weights() | |
def init_weights(self): | |
for m in self.DyConv.modules(): | |
if isinstance(m, nn.Conv2d): | |
nn.init.normal_(m.weight.data, 0, 0.01) | |
if m.bias is not None: | |
m.bias.data.zero_() | |
if self.AttnConv is not None: | |
for m in self.AttnConv.modules(): | |
if isinstance(m, nn.Conv2d): | |
nn.init.normal_(m.weight.data, 0, 0.01) | |
if m.bias is not None: | |
m.bias.data.zero_() | |
def forward(self, x): | |
next_x = [] | |
for level, feature in enumerate(x): | |
conv_args = dict() | |
if self.offset is not None: | |
offset_mask = self.offset(feature) | |
offset = offset_mask[:, :18, :, :] | |
mask = offset_mask[:, 18:, :, :].sigmoid() | |
conv_args = dict(offset=offset, mask=mask) | |
temp_fea = [self.DyConv[1](feature, **conv_args)] | |
if level > 0: | |
temp_fea.append(self.DyConv[2](x[level - 1], **conv_args)) | |
if level < len(x) - 1: | |
temp_fea.append(F.upsample_bilinear(self.DyConv[0](x[level + 1], **conv_args), | |
size=[feature.size(2), feature.size(3)])) | |
mean_fea = torch.mean(torch.stack(temp_fea), dim=0, keepdim=False) | |
if self.AttnConv is not None: | |
attn_fea = [] | |
res_fea = [] | |
for fea in temp_fea: | |
res_fea.append(fea) | |
attn_fea.append(self.AttnConv(fea)) | |
res_fea = torch.stack(res_fea) | |
spa_pyr_attn = self.h_sigmoid(torch.stack(attn_fea)) | |
mean_fea = torch.mean(res_fea * spa_pyr_attn, dim=0, keepdim=False) | |
next_x.append(mean_fea) | |
next_x = [self.relu(item) for item in next_x] | |
return next_x | |
class DyHead(torch.nn.Module): | |
def __init__(self, cfg): | |
super(DyHead, self).__init__() | |
self.cfg = cfg | |
num_classes = cfg.MODEL.DYHEAD.NUM_CLASSES - 1 | |
num_anchors = len(cfg.MODEL.RPN.ASPECT_RATIOS) * cfg.MODEL.RPN.SCALES_PER_OCTAVE | |
in_channels = cfg.MODEL.BACKBONE.OUT_CHANNELS | |
channels = cfg.MODEL.DYHEAD.CHANNELS | |
if cfg.MODEL.DYHEAD.USE_GN: | |
bn_type = ['gn', cfg.MODEL.GROUP_NORM.NUM_GROUPS] | |
elif cfg.MODEL.DYHEAD.USE_NSYNCBN: | |
bn_type = 'nsbn' | |
elif cfg.MODEL.DYHEAD.USE_SYNCBN: | |
bn_type = 'sbn' | |
else: | |
bn_type = None | |
use_dyrelu = cfg.MODEL.DYHEAD.USE_DYRELU | |
use_dyfuse = cfg.MODEL.DYHEAD.USE_DYFUSE | |
use_deform = cfg.MODEL.DYHEAD.USE_DFCONV | |
if cfg.MODEL.DYHEAD.CONV_FUNC: | |
conv_func = lambda i, o, s: eval(cfg.MODEL.DYHEAD.CONV_FUNC)(i, o, s, bn_type=bn_type) | |
else: | |
conv_func = lambda i, o, s: Conv3x3Norm(i, o, s, deformable=use_deform, bn_type=bn_type) | |
dyhead_tower = [] | |
for i in range(cfg.MODEL.DYHEAD.NUM_CONVS): | |
dyhead_tower.append( | |
DyConv( | |
in_channels if i == 0 else channels, | |
channels, | |
conv_func=conv_func, | |
use_dyrelu=(use_dyrelu and in_channels == channels) if i == 0 else use_dyrelu, | |
use_dyfuse=(use_dyfuse and in_channels == channels) if i == 0 else use_dyfuse, | |
use_deform=(use_deform and in_channels == channels) if i == 0 else use_deform, | |
) | |
) | |
self.add_module('dyhead_tower', nn.Sequential(*dyhead_tower)) | |
if cfg.MODEL.DYHEAD.COSINE_SCALE <= 0: | |
self.cls_logits = nn.Conv2d(channels, num_anchors * num_classes, kernel_size=1) | |
self.cls_logits_bias = None | |
else: | |
self.cls_logits = nn.Conv2d(channels, num_anchors * num_classes, kernel_size=1, bias=False) | |
self.cls_logits_bias = nn.Parameter(torch.zeros(num_anchors * num_classes, requires_grad=True)) | |
self.cosine_scale = nn.Parameter(torch.ones(1) * cfg.MODEL.DYHEAD.COSINE_SCALE) | |
self.bbox_pred = nn.Conv2d(channels, num_anchors * 4, kernel_size=1) | |
self.centerness = nn.Conv2d(channels, num_anchors * 1, kernel_size=1) | |
# initialization | |
for modules in [self.cls_logits, self.bbox_pred, | |
self.centerness]: | |
for l in modules.modules(): | |
if isinstance(l, nn.Conv2d): | |
torch.nn.init.normal_(l.weight, std=0.01) | |
if hasattr(l, 'bias') and l.bias is not None: | |
torch.nn.init.constant_(l.bias, 0) | |
# initialize the bias for focal loss | |
prior_prob = cfg.MODEL.DYHEAD.PRIOR_PROB | |
bias_value = -math.log((1 - prior_prob) / prior_prob) | |
if self.cls_logits_bias is None: | |
torch.nn.init.constant_(self.cls_logits.bias, bias_value) | |
else: | |
torch.nn.init.constant_(self.cls_logits_bias, bias_value) | |
self.scales = nn.ModuleList([Scale(init_value=1.0) for _ in range(5)]) | |
def extract_feature(self, x): | |
output = [] | |
for i in range(len(self.dyhead_tower)): | |
x = self.dyhead_tower[i](x) | |
output.append(x) | |
return output | |
def forward(self, x): | |
logits = [] | |
bbox_reg = [] | |
centerness = [] | |
dyhead_tower = self.dyhead_tower(x) | |
for l, feature in enumerate(x): | |
if self.cls_logits_bias is None: | |
logit = self.cls_logits(dyhead_tower[l]) | |
else: | |
# CosineSimOutputLayers: https://github.com/ucbdrive/few-shot-object-detection/blob/master/fsdet/modeling/roi_heads/fast_rcnn.py#L448-L464 | |
# normalize the input x along the `channel` dimension | |
x_norm = torch.norm(dyhead_tower[l], p=2, dim=1, keepdim=True).expand_as(dyhead_tower[l]) | |
x_normalized = dyhead_tower[l].div(x_norm + 1e-5) | |
# normalize weight | |
temp_norm = ( | |
torch.norm(self.cls_logits.weight.data, p=2, dim=1, keepdim=True) | |
.expand_as(self.cls_logits.weight.data) | |
) | |
self.cls_logits.weight.data = self.cls_logits.weight.data.div( | |
temp_norm + 1e-5 | |
) | |
cos_dist = self.cls_logits(x_normalized) | |
logit = self.cosine_scale * cos_dist + self.cls_logits_bias.reshape(1, len(self.cls_logits_bias), 1, 1) | |
logits.append(logit) | |
bbox_pred = self.scales[l](self.bbox_pred(dyhead_tower[l])) | |
bbox_reg.append(bbox_pred) | |
centerness.append(self.centerness(dyhead_tower[l])) | |
return logits, bbox_reg, centerness | |
class DyHeadModule(torch.nn.Module): | |
def __init__(self, cfg): | |
super(DyHeadModule, self).__init__() | |
self.cfg = cfg | |
self.head = DyHead(cfg) | |
box_coder = BoxCoder(cfg) | |
self.loss_evaluator = make_atss_loss_evaluator(cfg, box_coder) | |
self.box_selector_train = make_atss_postprocessor(cfg, box_coder, is_train=True) | |
self.box_selector_test = make_atss_postprocessor(cfg, box_coder, is_train=False) | |
self.anchor_generator = make_anchor_generator_complex(cfg) | |
def forward(self, images, features, targets=None): | |
box_cls, box_regression, centerness = self.head(features) | |
anchors = self.anchor_generator(images, features) | |
if self.training: | |
return self._forward_train(box_cls, box_regression, centerness, targets, anchors) | |
else: | |
return self._forward_test(box_cls, box_regression, centerness, anchors) | |
def _forward_train(self, box_cls, box_regression, centerness, targets, anchors): | |
loss_box_cls, loss_box_reg, loss_centerness, _, _, _, _ = self.loss_evaluator( | |
box_cls, box_regression, centerness, targets, anchors | |
) | |
losses = { | |
"loss_cls": loss_box_cls, | |
"loss_reg": loss_box_reg, | |
"loss_centerness": loss_centerness | |
} | |
if self.cfg.MODEL.RPN_ONLY: | |
return None, losses | |
else: | |
# boxes = self.box_selector_train(box_cls, box_regression, centerness, anchors) | |
boxes = self.box_selector_train(box_regression, centerness, anchors, box_cls) | |
train_boxes = [] | |
# for b, a in zip(boxes, anchors): | |
# a = cat_boxlist(a) | |
# b.add_field("visibility", torch.ones(b.bbox.shape[0], dtype=torch.bool, device=b.bbox.device)) | |
# del b.extra_fields['scores'] | |
# del b.extra_fields['labels'] | |
# train_boxes.append(cat_boxlist([b, a])) | |
for b, t in zip(boxes, targets): | |
tb = t.copy_with_fields(["labels"]) | |
tb.add_field("scores", torch.ones(tb.bbox.shape[0], dtype=torch.bool, device=tb.bbox.device)) | |
train_boxes.append(cat_boxlist([b, tb])) | |
return train_boxes, losses | |
def _forward_test(self, box_cls, box_regression, centerness, anchors): | |
boxes = self.box_selector_test(box_regression, centerness, anchors, box_cls) | |
return boxes, {} | |