Spaces:
Sleeping
Sleeping
Added all files except large model files
Browse files- anekdoty.txt +0 -0
- cached_lm_GPT2Tokenizer_32_train_dataset.txt +0 -0
- cached_lm_GPT2Tokenizer_32_train_dataset.txt.lock +0 -0
- finetuned/config.json +41 -0
- finetuned/generation_config.json +7 -0
- finetuned/merges.txt +0 -0
- finetuned/model.safetensors +3 -0
- finetuned/runs/Aug08_16-55-33_polyakovk/events.out.tfevents.1723125335.polyakovk.25105.0 +3 -0
- finetuned/special_tokens_map.json +37 -0
- finetuned/tokenizer_config.json +58 -0
- finetuned/vocab.json +0 -0
- gpt.ipynb +333 -0
- gpt_jokes.py +61 -0
- requirements.txt +3 -0
- train_dataset.txt +0 -0
anekdoty.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
cached_lm_GPT2Tokenizer_32_train_dataset.txt
ADDED
Binary file (825 kB). View file
|
|
cached_lm_GPT2Tokenizer_32_train_dataset.txt.lock
ADDED
File without changes
|
finetuned/config.json
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "sberbank-ai/rugpt3small_based_on_gpt2",
|
3 |
+
"activation_function": "gelu_new",
|
4 |
+
"architectures": [
|
5 |
+
"GPT2LMHeadModel"
|
6 |
+
],
|
7 |
+
"attn_pdrop": 0.1,
|
8 |
+
"bos_token_id": 1,
|
9 |
+
"embd_pdrop": 0.1,
|
10 |
+
"eos_token_id": 2,
|
11 |
+
"gradient_checkpointing": false,
|
12 |
+
"id2label": {
|
13 |
+
"0": "LABEL_0"
|
14 |
+
},
|
15 |
+
"initializer_range": 0.02,
|
16 |
+
"label2id": {
|
17 |
+
"LABEL_0": 0
|
18 |
+
},
|
19 |
+
"layer_norm_epsilon": 1e-05,
|
20 |
+
"model_type": "gpt2",
|
21 |
+
"n_ctx": 2048,
|
22 |
+
"n_embd": 768,
|
23 |
+
"n_head": 12,
|
24 |
+
"n_inner": null,
|
25 |
+
"n_layer": 12,
|
26 |
+
"n_positions": 2048,
|
27 |
+
"pad_token_id": 0,
|
28 |
+
"reorder_and_upcast_attn": false,
|
29 |
+
"resid_pdrop": 0.1,
|
30 |
+
"scale_attn_by_inverse_layer_idx": false,
|
31 |
+
"scale_attn_weights": true,
|
32 |
+
"summary_activation": null,
|
33 |
+
"summary_first_dropout": 0.1,
|
34 |
+
"summary_proj_to_labels": true,
|
35 |
+
"summary_type": "cls_index",
|
36 |
+
"summary_use_proj": true,
|
37 |
+
"torch_dtype": "float32",
|
38 |
+
"transformers_version": "4.44.0",
|
39 |
+
"use_cache": true,
|
40 |
+
"vocab_size": 50264
|
41 |
+
}
|
finetuned/generation_config.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 1,
|
4 |
+
"eos_token_id": 2,
|
5 |
+
"pad_token_id": 0,
|
6 |
+
"transformers_version": "4.44.0"
|
7 |
+
}
|
finetuned/merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
finetuned/model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:835959117be04e902bc01acc4bf9d85c8ceffd3bc8db4eed27312235c7355c22
|
3 |
+
size 500941440
|
finetuned/runs/Aug08_16-55-33_polyakovk/events.out.tfevents.1723125335.polyakovk.25105.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cecffac6e122a4a480909d8de92471a3242633d8908bda02951d4fa74477b0f1
|
3 |
+
size 5520
|
finetuned/special_tokens_map.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": true,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "</s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": true,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"mask_token": {
|
17 |
+
"content": "<mask>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"pad_token": {
|
24 |
+
"content": "<pad>",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": true,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"unk_token": {
|
31 |
+
"content": "<unk>",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": true,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
}
|
37 |
+
}
|
finetuned/tokenizer_config.json
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": false,
|
3 |
+
"add_prefix_space": false,
|
4 |
+
"added_tokens_decoder": {
|
5 |
+
"0": {
|
6 |
+
"content": "<pad>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": true,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false,
|
11 |
+
"special": true
|
12 |
+
},
|
13 |
+
"1": {
|
14 |
+
"content": "<s>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": true,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false,
|
19 |
+
"special": true
|
20 |
+
},
|
21 |
+
"2": {
|
22 |
+
"content": "</s>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": true,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false,
|
27 |
+
"special": true
|
28 |
+
},
|
29 |
+
"3": {
|
30 |
+
"content": "<unk>",
|
31 |
+
"lstrip": false,
|
32 |
+
"normalized": true,
|
33 |
+
"rstrip": false,
|
34 |
+
"single_word": false,
|
35 |
+
"special": true
|
36 |
+
},
|
37 |
+
"4": {
|
38 |
+
"content": "<mask>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false,
|
43 |
+
"special": true
|
44 |
+
}
|
45 |
+
},
|
46 |
+
"bos_token": "<s>",
|
47 |
+
"clean_up_tokenization_spaces": true,
|
48 |
+
"eos_token": "</s>",
|
49 |
+
"errors": "replace",
|
50 |
+
"mask_token": "<mask>",
|
51 |
+
"model_max_length": 2048,
|
52 |
+
"pad_token": "<pad>",
|
53 |
+
"padding_side": "left",
|
54 |
+
"tokenizer_class": "GPT2Tokenizer",
|
55 |
+
"truncation_side": "left",
|
56 |
+
"trust_remote_code": false,
|
57 |
+
"unk_token": "<unk>"
|
58 |
+
}
|
finetuned/vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
gpt.ipynb
ADDED
@@ -0,0 +1,333 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 2,
|
6 |
+
"metadata": {},
|
7 |
+
"outputs": [],
|
8 |
+
"source": [
|
9 |
+
"from transformers import GPT2LMHeadModel, GPT2Tokenizer\n",
|
10 |
+
"import torch\n",
|
11 |
+
"DEVICE = torch.device(\"cuda:0\")\n",
|
12 |
+
"\n",
|
13 |
+
"model_name_or_path = \"sberbank-ai/rugpt3small_based_on_gpt2\"\n",
|
14 |
+
"tokenizer = GPT2Tokenizer.from_pretrained(model_name_or_path)\n",
|
15 |
+
"model = GPT2LMHeadModel.from_pretrained(model_name_or_path).to(DEVICE)"
|
16 |
+
]
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"cell_type": "code",
|
20 |
+
"execution_count": 3,
|
21 |
+
"metadata": {},
|
22 |
+
"outputs": [],
|
23 |
+
"source": [
|
24 |
+
"with open('anekdoty.txt', 'r', encoding='utf-8') as file:\n",
|
25 |
+
" text = file.read()"
|
26 |
+
]
|
27 |
+
},
|
28 |
+
{
|
29 |
+
"cell_type": "code",
|
30 |
+
"execution_count": 4,
|
31 |
+
"metadata": {},
|
32 |
+
"outputs": [
|
33 |
+
{
|
34 |
+
"name": "stderr",
|
35 |
+
"output_type": "stream",
|
36 |
+
"text": [
|
37 |
+
"/home/polyakovk/venv_linux/lib/python3.11/site-packages/transformers/data/datasets/language_modeling.py:53: FutureWarning: This dataset will be removed from the library soon, preprocessing should be handled with the 🤗 Datasets library. You can have a look at this example script for pointers: https://github.com/huggingface/transformers/blob/main/examples/pytorch/language-modeling/run_mlm.py\n",
|
38 |
+
" warnings.warn(\n"
|
39 |
+
]
|
40 |
+
}
|
41 |
+
],
|
42 |
+
"source": [
|
43 |
+
"from transformers import TextDataset, DataCollatorForLanguageModeling\n",
|
44 |
+
"\n",
|
45 |
+
"# Сохраним обучающие данные в .txt файл \n",
|
46 |
+
"train_path = 'train_dataset.txt'\n",
|
47 |
+
"with open(train_path, \"w\") as f:\n",
|
48 |
+
" f.write(text)\n",
|
49 |
+
"\n",
|
50 |
+
"# Создание датасета\n",
|
51 |
+
"train_dataset = TextDataset(tokenizer=tokenizer,file_path=train_path,block_size=32)\n",
|
52 |
+
" \n",
|
53 |
+
"# Создание даталодера (нарезает текст на оптимальные по длине куски)\n",
|
54 |
+
"data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False)"
|
55 |
+
]
|
56 |
+
},
|
57 |
+
{
|
58 |
+
"cell_type": "code",
|
59 |
+
"execution_count": 5,
|
60 |
+
"metadata": {},
|
61 |
+
"outputs": [],
|
62 |
+
"source": [
|
63 |
+
"from transformers import Trainer, TrainingArguments\n",
|
64 |
+
"\n",
|
65 |
+
"training_args = TrainingArguments(\n",
|
66 |
+
" output_dir=\"./finetuned\",\n",
|
67 |
+
" overwrite_output_dir=True,\n",
|
68 |
+
" num_train_epochs=30,\n",
|
69 |
+
" per_device_train_batch_size=32,\n",
|
70 |
+
" per_device_eval_batch_size=16,\n",
|
71 |
+
" warmup_steps=10,\n",
|
72 |
+
" gradient_accumulation_steps=32,\n",
|
73 |
+
" )\n",
|
74 |
+
"\n",
|
75 |
+
"trainer = Trainer(\n",
|
76 |
+
" model=model,\n",
|
77 |
+
" args=training_args,\n",
|
78 |
+
" data_collator=data_collator,\n",
|
79 |
+
" train_dataset=train_dataset,\n",
|
80 |
+
" optimizers = (torch.optim.AdamW(model.parameters(),lr=0.001),None)\n",
|
81 |
+
")"
|
82 |
+
]
|
83 |
+
},
|
84 |
+
{
|
85 |
+
"cell_type": "code",
|
86 |
+
"execution_count": 5,
|
87 |
+
"metadata": {},
|
88 |
+
"outputs": [
|
89 |
+
{
|
90 |
+
"data": {
|
91 |
+
"text/html": [
|
92 |
+
"\n",
|
93 |
+
" <div>\n",
|
94 |
+
" \n",
|
95 |
+
" <progress value='240' max='240' style='width:300px; height:20px; vertical-align: middle;'></progress>\n",
|
96 |
+
" [240/240 1:14:57, Epoch 27/30]\n",
|
97 |
+
" </div>\n",
|
98 |
+
" <table border=\"1\" class=\"dataframe\">\n",
|
99 |
+
" <thead>\n",
|
100 |
+
" <tr style=\"text-align: left;\">\n",
|
101 |
+
" <th>Step</th>\n",
|
102 |
+
" <th>Training Loss</th>\n",
|
103 |
+
" </tr>\n",
|
104 |
+
" </thead>\n",
|
105 |
+
" <tbody>\n",
|
106 |
+
" </tbody>\n",
|
107 |
+
"</table><p>"
|
108 |
+
],
|
109 |
+
"text/plain": [
|
110 |
+
"<IPython.core.display.HTML object>"
|
111 |
+
]
|
112 |
+
},
|
113 |
+
"metadata": {},
|
114 |
+
"output_type": "display_data"
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"data": {
|
118 |
+
"text/plain": [
|
119 |
+
"TrainOutput(global_step=240, training_loss=0.9343911488850911, metrics={'train_runtime': 4515.8084, 'train_samples_per_second': 58.428, 'train_steps_per_second': 0.053, 'total_flos': 4011240960000000.0, 'train_loss': 0.9343911488850911, 'epoch': 27.927272727272726})"
|
120 |
+
]
|
121 |
+
},
|
122 |
+
"execution_count": 5,
|
123 |
+
"metadata": {},
|
124 |
+
"output_type": "execute_result"
|
125 |
+
}
|
126 |
+
],
|
127 |
+
"source": [
|
128 |
+
"trainer.train()"
|
129 |
+
]
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"cell_type": "code",
|
133 |
+
"execution_count": 9,
|
134 |
+
"metadata": {},
|
135 |
+
"outputs": [],
|
136 |
+
"source": [
|
137 |
+
"model_path = \"finetuned\"\n",
|
138 |
+
"tokenizer = GPT2Tokenizer.from_pretrained(model_path)\n",
|
139 |
+
"model = GPT2LMHeadModel.from_pretrained(model_path).to(DEVICE)"
|
140 |
+
]
|
141 |
+
},
|
142 |
+
{
|
143 |
+
"cell_type": "code",
|
144 |
+
"execution_count": 70,
|
145 |
+
"metadata": {},
|
146 |
+
"outputs": [],
|
147 |
+
"source": [
|
148 |
+
"def generate_jokes(prompt, temperature, top_p, max_length, num_return_sequences):\n",
|
149 |
+
" input_ids = tokenizer.encode(prompt, return_tensors='pt').to(DEVICE)\n",
|
150 |
+
" \n",
|
151 |
+
" # Генерируем несколько шуток\n",
|
152 |
+
" outputs = model.generate(\n",
|
153 |
+
" input_ids=input_ids,\n",
|
154 |
+
" do_sample=True,\n",
|
155 |
+
" # num_beams=5,\n",
|
156 |
+
" temperature=temperature,\n",
|
157 |
+
" top_p=top_p,\n",
|
158 |
+
" max_length=max_length,\n",
|
159 |
+
" num_return_sequences=num_return_sequences\n",
|
160 |
+
" )\n",
|
161 |
+
" \n",
|
162 |
+
" # Обработка всех сгенерированных шуток\n",
|
163 |
+
" jokes = []\n",
|
164 |
+
" for output in outputs:\n",
|
165 |
+
" generated_text = tokenizer.decode(output, skip_special_tokens=True)\n",
|
166 |
+
" # Обрезаем текст после первой точки\n",
|
167 |
+
" if '…' in generated_text:\n",
|
168 |
+
" generated_text = generated_text.split('…')[0] + '.'\n",
|
169 |
+
" elif '.' in generated_text:\n",
|
170 |
+
" generated_text = generated_text.split('.')[0] + '.'\n",
|
171 |
+
" elif '!' in generated_text:\n",
|
172 |
+
" generated_text = generated_text.split('!')[0] + '.'\n",
|
173 |
+
" jokes.append(generated_text)\n",
|
174 |
+
" \n",
|
175 |
+
" return jokes"
|
176 |
+
]
|
177 |
+
},
|
178 |
+
{
|
179 |
+
"cell_type": "code",
|
180 |
+
"execution_count": 73,
|
181 |
+
"metadata": {},
|
182 |
+
"outputs": [
|
183 |
+
{
|
184 |
+
"name": "stdout",
|
185 |
+
"output_type": "stream",
|
186 |
+
"text": [
|
187 |
+
"['Шла Саша по шоссе, громко разговаривая с шофером.', 'Шла Саша по шоссе, громко матерясь и упирая руку в ширинку.', 'Шла Саша по шоссе, несла пургу и, как раз, дождь.', 'Шла Саша по шоссе, но не за трактором.']\n"
|
188 |
+
]
|
189 |
+
}
|
190 |
+
],
|
191 |
+
"source": [
|
192 |
+
"text = \"Шла Саша по шоссе\"\n",
|
193 |
+
"print(generate_jokes(text, 1, 0.9, 30, 4))"
|
194 |
+
]
|
195 |
+
},
|
196 |
+
{
|
197 |
+
"cell_type": "code",
|
198 |
+
"execution_count": 10,
|
199 |
+
"metadata": {},
|
200 |
+
"outputs": [
|
201 |
+
{
|
202 |
+
"name": "stdout",
|
203 |
+
"output_type": "stream",
|
204 |
+
"text": [
|
205 |
+
"\n",
|
206 |
+
"однажды я проваливал экзамен по истории.\n",
|
207 |
+
"— Вино с возрастом становится лучше. Я становлюсь лучше с вином…\n",
|
208 |
+
"— Сними\n"
|
209 |
+
]
|
210 |
+
}
|
211 |
+
],
|
212 |
+
"source": [
|
213 |
+
"text = \"однажды я пришел из школы\"\n",
|
214 |
+
"input_ids = tokenizer.encode(text, return_tensors=\"pt\").to(DEVICE)\n",
|
215 |
+
"model.eval()\n",
|
216 |
+
"with torch.no_grad():\n",
|
217 |
+
" out = model.generate(input_ids, \n",
|
218 |
+
" do_sample=True,\n",
|
219 |
+
" num_beams=2,\n",
|
220 |
+
" temperature=1.5,\n",
|
221 |
+
" top_p=0.9,\n",
|
222 |
+
" max_length=30,\n",
|
223 |
+
" \n",
|
224 |
+
" )\n",
|
225 |
+
"\n",
|
226 |
+
"generated_text = list(map(tokenizer.decode, out))[0]\n",
|
227 |
+
"print()\n",
|
228 |
+
"print(generated_text)"
|
229 |
+
]
|
230 |
+
},
|
231 |
+
{
|
232 |
+
"cell_type": "code",
|
233 |
+
"execution_count": 8,
|
234 |
+
"metadata": {},
|
235 |
+
"outputs": [],
|
236 |
+
"source": [
|
237 |
+
"# model.save_pretrained('./finetuned')\n",
|
238 |
+
"# tokenizer.save_pretrained('./finetuned')"
|
239 |
+
]
|
240 |
+
},
|
241 |
+
{
|
242 |
+
"cell_type": "code",
|
243 |
+
"execution_count": 38,
|
244 |
+
"metadata": {},
|
245 |
+
"outputs": [],
|
246 |
+
"source": [
|
247 |
+
"# import requests\n",
|
248 |
+
"# from bs4 import BeautifulSoup\n",
|
249 |
+
"# import re\n",
|
250 |
+
"\n",
|
251 |
+
"# # Функция для получения шуток с одной страницы\n",
|
252 |
+
"# def get_jokes_from_page(url):\n",
|
253 |
+
"# response = requests.get(url, headers=headers)\n",
|
254 |
+
"# response.raise_for_status() # Проверка на ошибки запроса\n",
|
255 |
+
"\n",
|
256 |
+
"# soup = BeautifulSoup(response.text, 'html.parser')\n",
|
257 |
+
"\n",
|
258 |
+
"# # Находим все анекдоты на странице\n",
|
259 |
+
"# jokes = soup.find_all('div', class_='anekdot-text') # Замените селектор на правильный\n",
|
260 |
+
"\n",
|
261 |
+
"# page_jokes = []\n",
|
262 |
+
"# for joke in jokes:\n",
|
263 |
+
"# # Извлекаем текст анекдота\n",
|
264 |
+
"# joke_text = joke.get_text(strip=True)\n",
|
265 |
+
" \n",
|
266 |
+
"# # Удаляем цифры и символы в конце текста\n",
|
267 |
+
"# joke_text_cleaned = re.sub(r'\\d+[\\#\\d]*$', '', joke_text).strip()\n",
|
268 |
+
" \n",
|
269 |
+
"# # Добавляем очищенный текст в список\n",
|
270 |
+
"# page_jokes.append(joke_text_cleaned)\n",
|
271 |
+
" \n",
|
272 |
+
"# return page_jokes\n",
|
273 |
+
"\n",
|
274 |
+
"# # URL-шаблон для страниц\n",
|
275 |
+
"# base_url = \"https://anekdotovstreet.com/korotkie-anekdoty/{}/\"\n",
|
276 |
+
"\n",
|
277 |
+
"# # Заголовки для имитации браузера\n",
|
278 |
+
"# headers = {\n",
|
279 |
+
"# 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36'\n",
|
280 |
+
"# }\n",
|
281 |
+
"\n",
|
282 |
+
"# # Открываем файл для записи анекдотов\n",
|
283 |
+
"# with open('anekdoty.txt', 'w', encoding='utf-8') as file:\n",
|
284 |
+
"# for page_number in range(2, 400):\n",
|
285 |
+
"# # Формируем URL для текущей страницы\n",
|
286 |
+
"# url = base_url.format(page_number)\n",
|
287 |
+
"# print(f\"Собираю шутки со страницы {page_number}...\")\n",
|
288 |
+
"\n",
|
289 |
+
"# # Получаем шутки с текущей страницы\n",
|
290 |
+
"# jokes = get_jokes_from_page(url)\n",
|
291 |
+
" \n",
|
292 |
+
"# # Если шуток нет, значит, страницы закончились (опционально)\n",
|
293 |
+
"# if not jokes:\n",
|
294 |
+
"# print(f\"Шутки на странице {page_number} не найдены.\")\n",
|
295 |
+
"# continue\n",
|
296 |
+
" \n",
|
297 |
+
"# # Записываем шутки в файл\n",
|
298 |
+
"# for joke in jokes:\n",
|
299 |
+
"# file.write(joke + '\\n')\n",
|
300 |
+
"\n",
|
301 |
+
"# print(\"Анекдоты успешно сохранены в файл 'anekdoty.txt'.\")"
|
302 |
+
]
|
303 |
+
},
|
304 |
+
{
|
305 |
+
"cell_type": "code",
|
306 |
+
"execution_count": null,
|
307 |
+
"metadata": {},
|
308 |
+
"outputs": [],
|
309 |
+
"source": []
|
310 |
+
}
|
311 |
+
],
|
312 |
+
"metadata": {
|
313 |
+
"kernelspec": {
|
314 |
+
"display_name": "venv_linux",
|
315 |
+
"language": "python",
|
316 |
+
"name": "python3"
|
317 |
+
},
|
318 |
+
"language_info": {
|
319 |
+
"codemirror_mode": {
|
320 |
+
"name": "ipython",
|
321 |
+
"version": 3
|
322 |
+
},
|
323 |
+
"file_extension": ".py",
|
324 |
+
"mimetype": "text/x-python",
|
325 |
+
"name": "python",
|
326 |
+
"nbconvert_exporter": "python",
|
327 |
+
"pygments_lexer": "ipython3",
|
328 |
+
"version": "3.11.9"
|
329 |
+
}
|
330 |
+
},
|
331 |
+
"nbformat": 4,
|
332 |
+
"nbformat_minor": 2
|
333 |
+
}
|
gpt_jokes.py
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from transformers import GPT2LMHeadModel, GPT2Tokenizer
|
3 |
+
import torch
|
4 |
+
|
5 |
+
|
6 |
+
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
7 |
+
|
8 |
+
|
9 |
+
# Загрузка обученной модели и токенизатора
|
10 |
+
model_path = "finetuned"
|
11 |
+
tokenizer = GPT2Tokenizer.from_pretrained(model_path)
|
12 |
+
model = GPT2LMHeadModel.from_pretrained(model_path).to(DEVICE)
|
13 |
+
|
14 |
+
def generate_jokes(prompt, temperature, top_p, max_length, num_return_sequences):
|
15 |
+
input_ids = tokenizer.encode(prompt, return_tensors='pt').to(DEVICE)
|
16 |
+
|
17 |
+
# Генерируем несколько шуток
|
18 |
+
outputs = model.generate(
|
19 |
+
input_ids=input_ids,
|
20 |
+
do_sample=True,
|
21 |
+
# num_beams=5,
|
22 |
+
temperature=temperature,
|
23 |
+
top_p=top_p,
|
24 |
+
max_length=max_length,
|
25 |
+
num_return_sequences=num_return_sequences
|
26 |
+
)
|
27 |
+
|
28 |
+
# Обработка всех сгенерированных шуток
|
29 |
+
jokes = []
|
30 |
+
for output in outputs:
|
31 |
+
generated_text = tokenizer.decode(output, skip_special_tokens=True)
|
32 |
+
# Обрезаем текст после первой точки
|
33 |
+
if '…' in generated_text:
|
34 |
+
generated_text = generated_text.split('…')[0] + '.'
|
35 |
+
elif '.' in generated_text:
|
36 |
+
generated_text = generated_text.split('.')[0] + '.'
|
37 |
+
elif '!' in generated_text:
|
38 |
+
generated_text = generated_text.split('!')[0] + '.'
|
39 |
+
jokes.append(generated_text)
|
40 |
+
|
41 |
+
return jokes
|
42 |
+
|
43 |
+
# Создание интерфейса Streamlit
|
44 |
+
st.title('GPT-2, как генератор сомнительных шуток')
|
45 |
+
|
46 |
+
# Ввод промта
|
47 |
+
prompt = st.text_input('Введите свой промт:', 'Народная мудрость гласит')
|
48 |
+
|
49 |
+
# Регулировка параметров генерации
|
50 |
+
max_length = st.slider('Максимальная длина последовательности:', min_value=10, max_value=100, value=35)
|
51 |
+
num_return_sequences = st.slider('Число генераций текста:', min_value=1, max_value=5, value=3)
|
52 |
+
temperature = st.slider('Температура (дисперсия):', min_value=0.1, max_value=2.0, value=1.0, step=0.1)
|
53 |
+
top_p = st.slider('Top-p (ядро):', min_value=0.1, max_value=1.0, value=0.9, step=0.1)
|
54 |
+
|
55 |
+
# Генерация текста
|
56 |
+
if st.button('Сгенерировать'):
|
57 |
+
with st.spinner('Генерация текста...'):
|
58 |
+
generated_texts = generate_jokes(prompt,temperature, top_p, max_length, num_return_sequences)
|
59 |
+
for i, text in enumerate(generated_texts):
|
60 |
+
st.subheader(f'Генерация {i + 1}:')
|
61 |
+
st.write(text)
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
streamlit==1.37.0
|
2 |
+
torch==2.4.0
|
3 |
+
transformers==4.44.0
|
train_dataset.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|