File size: 9,609 Bytes
9889643
 
 
 
 
 
 
08ab464
add1f34
 
 
db180a4
add1f34
9889643
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
add1f34
9889643
 
 
 
add1f34
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9889643
 
 
add1f34
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9889643
 
 
 
 
 
 
 
 
 
 
 
add1f34
9889643
 
 
 
 
 
add1f34
 
 
 
 
 
9889643
add1f34
 
 
9889643
add1f34
 
 
 
 
 
 
9889643
add1f34
 
 
 
 
9889643
 
add1f34
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9889643
 
 
 
add1f34
 
 
9889643
 
add1f34
 
 
 
 
 
9a573be
9889643
add1f34
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9a573be
08ab464
 
add1f34
08ab464
 
9889643
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
add1f34
9889643
add1f34
 
9889643
 
 
 
 
 
 
 
 
add1f34
db180a4
 
 
 
 
 
 
 
 
 
9889643
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
from fastapi import FastAPI
from pydantic import BaseModel
from sentence_transformers import SentenceTransformer
import chromadb
from fastapi.middleware.cors import CORSMiddleware
import uvicorn
import requests
from itertools import combinations
import sqlite3
import pandas as pd
import os
import time

# Define FastAPI app
app = FastAPI()

origins = [
    "http://localhost:5173",
    "localhost:5173"
]

app.add_middleware(
    CORSMiddleware,
    allow_origins=origins,
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"]
)

# Load the model at startup
model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
client = chromadb.PersistentClient(path='./chromadb')
collection = client.get_or_create_collection(name="symptomsvector")

# Helper function to initialize database and populate from CSV if needed
def init_db():
    conn = sqlite3.connect("diseases_symptoms.db")
    cursor = conn.cursor()
    cursor.execute('''
        CREATE TABLE IF NOT EXISTS diseases (
            id INTEGER PRIMARY KEY,
            name TEXT,
            symptoms TEXT,
            treatments TEXT
        )
    ''')
    conn.commit()
    return conn

# Populate database from CSV if it's the first time
if not os.path.exists("diseases_symptoms.db"):
    conn = init_db()
    df = pd.read_csv("hf://datasets/QuyenAnhDE/Diseases_Symptoms/Diseases_Symptoms.csv")
    df['Symptoms'] = df['Symptoms'].str.split(',').apply(lambda x: [s.strip() for s in x])

    for _, row in df.iterrows():
        symptoms_str = ",".join(row['Symptoms'])
        cursor = conn.cursor()
        cursor.execute("INSERT INTO diseases (name, symptoms, treatments) VALUES (?, ?, ?)", 
                       (row['Name'], symptoms_str, row.get('Treatments', '')))
        conn.commit()
    conn.close()

class SymptomQuery(BaseModel):
    symptom: str

# Helper function to fetch diseases matching symptoms from SQLite
def fetch_diseases_by_symptoms(matching_symptoms):
    conn = sqlite3.connect("diseases_symptoms.db")
    cursor = conn.cursor()
    disease_list = []
    unique_symptoms_list = []
    matching_symptom_str = ','.join(matching_symptoms)

    # Retrieve matching diseases based on symptoms in SQLite
    for row in cursor.execute("SELECT name, symptoms, treatments FROM diseases WHERE symptoms LIKE ?", 
                              (f'%{matching_symptom_str}%',)):
        disease_info = {
            'Disease': row[0],
            'Symptoms': row[1].split(','),
            'Treatments': row[2]
        }
        disease_list.append(disease_info)

        # Add symptoms to the unique list, converting to lowercase to avoid duplicates
        for symptom in row[1].split(','):
            symptom_lower = symptom.strip().lower()
            if symptom_lower not in unique_symptoms_list:
                unique_symptoms_list.append(symptom_lower)

    conn.close()
    return disease_list, unique_symptoms_list

@app.post("/find_matching_symptoms")
def find_matching_symptoms(query: SymptomQuery):
    symptoms = query.symptom.split(',')
    all_results = []

    for symptom in symptoms:
        symptom = symptom.strip()
        query_embedding = model.encode([symptom])

        # Perform similarity search in ChromaDB
        results = collection.query(
            query_embeddings=query_embedding.tolist(),
            n_results=3
        )
        all_results.extend(results['documents'][0])

    matching_symptoms = list(dict.fromkeys(all_results))
    return {"matching_symptoms": matching_symptoms}

@app.post("/find_disease_list")
def find_disease_list(query: SymptomQuery):
    # Normalize and embed each input symptom
    selected_symptoms = [symptom.strip().lower() for symptom in query.symptom.split(',')]
    all_selected_symptoms.update(selected_symptoms)  # Add new symptoms to the set
    all_results = []

    for symptom in selected_symptoms:
        # Generate the embedding for the current symptom
        query_embedding = model.encode([symptom])

        # Perform similarity search in ChromaDB
        results = collection.query(
            query_embeddings=query_embedding.tolist(),
            n_results=5  # Return top 5 similar symptoms for each input symptom
        )
        # Aggregate the matching symptoms from the results
        all_results.extend(results['documents'][0])

    # Remove duplicates while preserving order
    matching_symptoms = list(dict.fromkeys(all_results))

    conn = sqlite3.connect("diseases_symptoms.db")
    cursor = conn.cursor()

    disease_list = []
    unique_symptoms_set = set()

    # Retrieve diseases that contain any of the matching symptoms
    for row in cursor.execute("SELECT name, symptoms, treatments FROM diseases"):
        disease_name = row[0]
        disease_symptoms = [symptom.strip().lower() for symptom in row[1].split(',')]  # Normalize database symptoms
        treatments = row[2]

        # Check if there is any overlap between matching symptoms and the disease symptoms
        matched_symptoms = [symptom for symptom in matching_symptoms if symptom in disease_symptoms]

        if matched_symptoms:  # Include disease if there is at least one matching symptom
            disease_info = {
                'Disease': disease_name,
                'Symptoms': disease_symptoms,
                'Treatments': treatments
            }
            disease_list.append(disease_info)

            # Add symptoms not yet selected by the user to unique symptoms list
            for symptom in disease_symptoms:
                if symptom not in selected_symptoms:
                    unique_symptoms_set.add(symptom)

    conn.close()

    # Convert unique symptoms set to a sorted list for consistent output
    unique_symptoms_list = sorted(unique_symptoms_set)

    return {
        "disease_list": disease_list,
        "unique_symptoms_list": unique_symptoms_list
    }



class SelectedSymptomsQuery(BaseModel):
    selected_symptoms: list

# Initialize global list for persistent selected symptoms
all_selected_symptoms = set()  # Use a set to avoid duplicates

@app.post("/find_disease")
def find_disease(query: SelectedSymptomsQuery):
    # Normalize input symptoms and add them to global list
    new_symptoms = [symptom.strip().lower() for symptom in query.selected_symptoms]
    all_selected_symptoms.update(new_symptoms)  # Add new symptoms to the set

    conn = sqlite3.connect("diseases_symptoms.db")
    cursor = conn.cursor()

    disease_list = []
    unique_symptoms_set = set()

    # Fetch all diseases and calculate matching symptoms
    for row in cursor.execute("SELECT name, symptoms, treatments FROM diseases"):
        disease_name = row[0]
        disease_symptoms = [symptom.strip().lower() for symptom in row[1].split(',')]
        treatments = row[2]

        # Find common symptoms between all selected and disease symptoms
        matched_symptoms = [symptom for symptom in all_selected_symptoms if symptom in disease_symptoms]

        # Check for full match between known symptoms and disease symptoms
        if len(matched_symptoms) == len(all_selected_symptoms):
            disease_info = {
                'Disease': disease_name,
                'Symptoms': disease_symptoms,
                'Treatments': treatments
            }
            disease_list.append(disease_info)

            # Add symptoms not yet selected by the user to unique symptoms list
            for symptom in disease_symptoms:
                if symptom not in all_selected_symptoms:
                    unique_symptoms_set.add(symptom)

    conn.close()

    # Convert unique symptoms set to a sorted list for consistent output
    unique_symptoms_list = sorted(unique_symptoms_set)

    return {
        "unique_symptoms_list": unique_symptoms_list,
        "all_selected_symptoms": list(all_selected_symptoms),  # Convert set to list for JSON response
        "disease_list": disease_list
    }

class DiseaseDetail(BaseModel):
    Disease: str
    Symptoms: list
    Treatments: str
    MatchCount: int

@app.post("/pass2llm")
def pass2llm(query: DiseaseDetail):
    headers = {
        "Authorization": "Bearer 2npJaJjnLBj1RGPcGf0QiyAAJHJ_5qqtw2divkpoAipqN9WLG",
        "Ngrok-Version": "2"
    }
    response = requests.get("https://api.ngrok.com/endpoints", headers=headers)

    if response.status_code == 200:
        llm_api_response = response.json()
        public_url = llm_api_response['endpoints'][0]['public_url']
        prompt = f"Here is a list of diseases and their details: {query}. Please generate a summary."

        llm_headers = {"Content-Type": "application/json"}
        llm_payload = {"model": "llama3", "prompt": prompt, "stream": False}
        llm_response = requests.post(f"{public_url}/api/generate", headers=llm_headers, json=llm_payload)

        if llm_response.status_code == 200:
            llm_response_json = llm_response.json()
            return {"message": "Successfully passed to LLM!", "llm_response": llm_response_json.get("response")}
        else:
            return {"message": "Failed to get response from LLM!", "error": llm_response.text}
    else:
        return {"message": "Failed to get public URL from Ngrok!", "error": response.text}




@app.post("/trigger-reload")
async def trigger_reload():
    # Update the timestamp of a dummy file to trigger reload
    with open("reload_trigger.txt", "w") as f:
        f.write(f"Trigger reload at {time.time()}")
    return {"message": "Reload triggered."}

# To run the FastAPI app with Uvicorn
# if __name__ == "__main__":
#     uvicorn.run(app, host="0.0.0.0", port=8000)