File size: 19,178 Bytes
4014562
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
'''
Initial Code taken from SemSup Repository. 
'''



import torch
from torch import nn
import sys
from transformers.modeling_outputs import SequenceClassifierOutput
from transformers.models.roberta.modeling_roberta import RobertaModel, RobertaPreTrainedModel
from transformers.models.bert.modeling_bert import BertModel, BertPreTrainedModel
from transformers import AutoModel, AutoTokenizer, AutoModelForSequenceClassification

# Import configs
from transformers.models.roberta.configuration_roberta import RobertaConfig
from transformers.models.bert.configuration_bert import BertConfig
import numpy as np
# Loss functions
from torch.nn import BCEWithLogitsLoss

from typing import Optional, Union, Tuple, Dict, List

import itertools

MODEL_FOR_SEMANTIC_EMBEDDING = {
    "roberta": "RobertaForSemanticEmbedding",
    "bert": "BertForSemanticEmbedding",
}

MODEL_TO_CONFIG = {
    "roberta": RobertaConfig,
    "bert": BertConfig,
}


def getLabelModel(data_args, model_args):
    tokenizer = AutoTokenizer.from_pretrained(
        model_args.label_model_name_or_path,
        cache_dir=model_args.cache_dir,
        use_fast=model_args.use_fast_tokenizer,
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
    )

    model = AutoModel.from_pretrained(
        model_args.label_model_name_or_path,
        cache_dir=model_args.cache_dir,
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
    )

    return model, tokenizer



class AutoModelForMultiLabelClassification:
    """
    Class for choosing the right model class automatically.
    Loosely based on AutoModel classes in HuggingFace.
    """
    
    @staticmethod
    def from_pretrained(*args, **kwargs):
        # Check what type of model it is
        for key in MODEL_TO_CONFIG.keys():
            if type(kwargs['config']) == MODEL_TO_CONFIG[key]:
                class_name = getattr(sys.modules[__name__], MODEL_FOR_SEMANTIC_EMBEDDING[key])
                return class_name.from_pretrained(*args, **kwargs)
        
        # If none of the models were chosen
        raise("This model type is not supported. Please choose one of {}".format(MODEL_FOR_SEMANTIC_EMBEDDING.keys()))

from transformers import BertForSequenceClassification, BertTokenizer
from transformers import RobertaForSequenceClassification, RobertaTokenizer
from transformers import XLNetForSequenceClassification, XLNetTokenizer

class BertForSemanticEmbedding(nn.Module):


    def __init__(self, config):
        # super().__init__(config)
        super().__init__()

        self.config = config

        self.coil = config.coil
        if self.coil:
            assert config.arch_type == 2
            self.token_dim = config.token_dim

        try: # Try catch was added to handle the ongoing hyper search experiments.
            self.arch_type = config.arch_type  
        except:
            self.arch_type = 2
        

        try:
            self.colbert = config.colbert
        except:
            self.colbert = False

        if config.encoder_model_type == 'bert':
            # self.encoder = BertModel(config)
            if self.arch_type == 1:
                self.encoder = AutoModelForSequenceClassification.from_pretrained(
                        'bert-base-uncased', output_hidden_states = True)
            else:
                self.encoder = AutoModel.from_pretrained(
                    config.model_name_or_path
                )
            # self.encoder = AutoModelForSequenceClassification.from_pretrained(
            #         'bert-base-uncased', output_hidden_states = True).bert
        elif config.encoder_model_type == 'roberta':
            self.encoder = RobertaForSequenceClassification.from_pretrained(
                    'roberta-base', num_labels = config.num_labels, output_hidden_states = True)
        elif config.encoder_model_type == 'xlnet':
            self.encoder = XLNetForSequenceClassification.from_pretrained(
                    'xlnet-base-cased', num_labels = config.num_labels, output_hidden_states = True)


        print('Config is', config)
        
        if config.negative_sampling == 'none':
            if config.arch_type == 1:
                self.fc1 = nn.Linear(5 * config.hidden_size, 512 if config.semsup else config.num_labels)
            elif self.arch_type == 3:
                self.fc1 = nn.Linear(config.hidden_size, 256 if config.semsup else config.num_labels)

        if self.coil:
            self.tok_proj = nn.Linear(self.encoder.config.hidden_size, self.token_dim)


        self.dropout = nn.Dropout(0.1)
        self.candidates_topk = 10
        if config.negative_sampling != 'none':
            self.group_y = np.array([np.array([l for l in group]) for group in config.group_y])
        #np.load('datasets/EUR-Lex/label_group_lightxml_0.npy', allow_pickle=True)

        self.negative_sampling = config.negative_sampling

        self.min_positive_samples = 20

        self.semsup = config.semsup
        self.label_projection = None
        if self.semsup:# and config.hidden_size != config.label_hidden_size:
            if self.arch_type == 1:
                self.label_projection = nn.Linear(512, config.label_hidden_size, bias= False)
            elif self.arch_type == 2:
                self.label_projection = nn.Linear(self.encoder.config.hidden_size, config.label_hidden_size, bias= False)
            elif self.arch_type == 3:
                self.label_projection = nn.Linear(256, config.label_hidden_size, bias= False)


        # self.post_init()    
    def compute_tok_score_cart(self, doc_reps, doc_input_ids, qry_reps, qry_input_ids, qry_attention_mask):
        if not self.colbert:
            qry_input_ids = qry_input_ids.unsqueeze(2).unsqueeze(3)  # Q * LQ * 1 * 1
            doc_input_ids = doc_input_ids.unsqueeze(0).unsqueeze(1)  # 1 * 1 * D * LD
            exact_match = doc_input_ids == qry_input_ids  # Q * LQ * D * LD
            exact_match = exact_match.float()
        scores_no_masking = torch.matmul(
            qry_reps.view(-1, self.token_dim),  # (Q * LQ) * d
            doc_reps.view(-1, self.token_dim).transpose(0, 1)  # d * (D * LD)
        )
        scores_no_masking = scores_no_masking.view(
            *qry_reps.shape[:2], *doc_reps.shape[:2])  # Q * LQ * D * LD
        if self.colbert:
            scores, _ =  scores_no_masking.max(dim=3) 
        else:
            scores, _ = (scores_no_masking * exact_match).max(dim=3)  # Q * LQ * D
        tok_scores = (scores * qry_attention_mask.reshape(-1, qry_attention_mask.shape[-1]).unsqueeze(2))[:, 1:].sum(1)
        return tok_scores

    def coil_eval_forward(
        self,
        input_ids: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        token_type_ids: Optional[torch.Tensor] = None,
        desc_input_ids = None,
        desc_attention_mask = None,
        lab_reps = None,
        label_embeddings = None,
        clustered_input_ids = None,
        clustered_desc_ids = None, 

    ):

        outputs_doc, logits = self.forward_input_encoder(input_ids, attention_mask, token_type_ids)

        doc_reps = self.tok_proj(outputs_doc.last_hidden_state)  # D * LD * d
        # lab_reps = self.tok_proj(outputs_lab.last_hidden_state @ self.label_projection.weight)  # Q * LQ * d

        if clustered_input_ids is None:
            tok_scores = self.compute_tok_score_cart(
                    doc_reps, input_ids,
                    lab_reps, desc_input_ids.reshape(-1, desc_input_ids.shape[-1]), desc_attention_mask
            )
        else:
            tok_scores = self.compute_tok_score_cart(
                    doc_reps, clustered_input_ids,
                    lab_reps, clustered_desc_ids.reshape(-1, clustered_desc_ids.shape[-1]), desc_attention_mask
            )

        logits = self.semsup_forward(logits, label_embeddings.reshape(desc_input_ids.shape[0], desc_input_ids.shape[1], -1).contiguous(), same_labels= True)
        
        new_tok_scores = torch.zeros(logits.shape, device = logits.device)
        for i in range(tok_scores.shape[1]):
            stride = tok_scores.shape[0]//tok_scores.shape[1]
            new_tok_scores[i] = tok_scores[i*stride: i*stride + stride ,i]
        logits += new_tok_scores.contiguous()
        return logits


    
    def coil_forward(self,
        input_ids: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        token_type_ids: Optional[torch.Tensor] = None,
        labels: Optional[torch.Tensor] = None,
        desc_input_ids: Optional[List[int]] = None,
        desc_attention_mask: Optional[List[int]] = None,
        desc_inputs_embeds: Optional[torch.Tensor] = None,
        return_dict: Optional[bool] = None,
        clustered_input_ids = None,
        clustered_desc_ids = None, 
        ignore_label_embeddings_and_out_lab = None,
     ):
        # print(desc_input_ids.shape, desc_attention_mask.shape, desc_inputs_embeds.shape)
        outputs_doc, logits = self.forward_input_encoder(input_ids, attention_mask, token_type_ids)
        if ignore_label_embeddings_and_out_lab is not None:
            outputs_lab, label_embeddings = outputs_lab, label_embeddings
        else:
            outputs_lab, label_embeddings, _, _ = self.forward_label_embeddings(None, None, desc_input_ids = desc_input_ids, desc_attention_mask = desc_attention_mask, return_hidden_states = True, desc_inputs_embeds = desc_inputs_embeds)


        doc_reps = self.tok_proj(outputs_doc.last_hidden_state)  # D * LD * d
        lab_reps = self.tok_proj(outputs_lab.last_hidden_state @ self.label_projection.weight)  # Q * LQ * d

        if clustered_input_ids is None:
            tok_scores = self.compute_tok_score_cart(
                    doc_reps, input_ids,
                    lab_reps, desc_input_ids.reshape(-1, desc_input_ids.shape[-1]), desc_attention_mask
            )
        else:
            tok_scores = self.compute_tok_score_cart(
                    doc_reps, clustered_input_ids,
                    lab_reps, clustered_desc_ids.reshape(-1, clustered_desc_ids.shape[-1]), desc_attention_mask
            )


        logits = self.semsup_forward(logits, label_embeddings.reshape(desc_input_ids.shape[0], desc_input_ids.shape[1], -1).contiguous(), same_labels= True)
        
        new_tok_scores = torch.zeros(logits.shape, device = logits.device)
        for i in range(tok_scores.shape[1]):
            stride = tok_scores.shape[0]//tok_scores.shape[1]
            new_tok_scores[i] = tok_scores[i*stride: i*stride + stride ,i]
        logits += new_tok_scores.contiguous()

        loss_fn = BCEWithLogitsLoss()
        loss = loss_fn(logits, labels)

        if not return_dict: 
            output = (logits,) + outputs_doc[2:] + (logits,)
            return ((loss,) + output) if loss is not None else output

        return SequenceClassifierOutput(
            loss=loss,
            logits=logits,
            hidden_states=outputs_doc.hidden_states,
            attentions=outputs_doc.attentions,
        )

    def semsup_forward(self, input_embeddings, label_embeddings, num_candidates = -1, list_to_set_mapping = None, same_labels = False):
        '''
            If same_labels = True, directly apply matrix multiplication
            else: num_candidates must not be -1, list_to_set_mapping must not be None
        '''
        if same_labels:
            logits = torch.bmm(input_embeddings.unsqueeze(1), label_embeddings.transpose(2,1)).squeeze(1)
        else:
            # TODO: Can we optimize this? Perhaps torch.bmm?
            logits = torch.stack(
                # For each batch point, calculate corresponding product with label embeddings
                [
                    logit @ label_embeddings[list_to_set_mapping[i*num_candidates: (i+1) * num_candidates]].T for i,logit in enumerate(input_embeddings)   
                ]
            )

        return logits

    def forward_label_embeddings(self, all_candidate_labels, label_desc_ids, desc_input_ids = None, desc_attention_mask = None, desc_inputs_embeds = None, return_hidden_states = False):
        # Given the candidates, and corresponding 
        # description numbers of labels
        # Returns the embeddings for unique label descriptions 
        
        if desc_attention_mask is None:
            num_candidates = all_candidate_labels.shape[1]
            # Create a set to perform minimal number of operations on common labels
            label_desc_ids_list = list(zip(itertools.chain(*label_desc_ids.detach().cpu().tolist()), itertools.chain(*all_candidate_labels.detach().cpu().tolist())))
            print('Original Length: ', len(label_desc_ids_list))
            label_desc_ids_set = torch.tensor(list(set(label_desc_ids_list)))
            print('New Length: ', label_desc_ids_set.shape)

            m1 = {tuple(x):i for i, x in enumerate(label_desc_ids_set.tolist())}
            list_to_set_mapping = torch.tensor([m1[x] for x in label_desc_ids_list])
            descs = [
                    self.tokenizedDescriptions[self.config.id2label[desc_lb[1].item()]][desc_lb[0]] for desc_lb in label_desc_ids_set
                ] 
            label_input_ids = torch.cat([
                desc['input_ids'] for desc in descs
            ])

            label_attention_mask = torch.cat([
                desc['attention_mask'] for desc in descs
            ])

            label_token_type_ids = torch.cat([
                desc['token_type_ids'] for desc in descs
            ])
            label_input_ids = label_input_ids.to(label_desc_ids.device)
            label_attention_mask = label_attention_mask.to(label_desc_ids.device)
            label_token_type_ids = label_token_type_ids.to(label_desc_ids.device)
            label_embeddings = self.label_model(
                label_input_ids,
                attention_mask=label_attention_mask,
                token_type_ids=label_token_type_ids,
            ).pooler_output
        else:
            list_to_set_mapping = None
            num_candidates = None
            if desc_inputs_embeds is not None:
                outputs = self.label_model(
                    inputs_embeds = desc_inputs_embeds.reshape(desc_inputs_embeds.shape[0] * desc_inputs_embeds.shape[1],desc_inputs_embeds.shape[2], desc_inputs_embeds.shape[3]).contiguous(),
                    attention_mask=desc_attention_mask.reshape(-1, desc_input_ids.shape[-1]).contiguous(),
                )
            else:
                outputs = self.label_model(
                    desc_input_ids.reshape(-1, desc_input_ids.shape[-1]).contiguous(),
                    attention_mask=desc_attention_mask.reshape(-1, desc_input_ids.shape[-1]).contiguous(),
                )
            label_embeddings = outputs.pooler_output
        if self.label_projection is not None:
            if return_hidden_states:
                return outputs, label_embeddings @ self.label_projection.weight, list_to_set_mapping, num_candidates
            else:
                return label_embeddings @ self.label_projection.weight, list_to_set_mapping, num_candidates
        else:
            return label_embeddings, list_to_set_mapping, num_candidates

    def forward_input_encoder(self, input_ids, attention_mask, token_type_ids, ):
        outputs = self.encoder(
            input_ids,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            output_hidden_states=True if self.arch_type == 1 else False,
        )

        # Currently, method specified in LightXML is used
        if self.arch_type in [2,3]:
            logits = outputs[1]
        elif self.arch_type == 1:
            logits = torch.cat([outputs.hidden_states[-i][:, 0] for i in range(1, 5+1)], dim=-1)
        
        if self.arch_type in [1,3]:
            logits = self.dropout(logits)

        # No Sampling
        if self.arch_type in [1,3]:
            logits = self.fc1(logits)
        return outputs, logits

    def forward(
        self,
        input_ids: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        token_type_ids: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.Tensor] = None,
        head_mask: Optional[torch.Tensor] = None,
        inputs_embeds: Optional[torch.Tensor] = None,
        labels: Optional[torch.Tensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        cluster_labels: Optional[torch.Tensor] = None,
        all_candidate_labels: Optional[torch.Tensor] = None,
        label_desc_ids: Optional[List[int]] = None,
        desc_inputs_embeds : Optional[torch.Tensor] = None,
        desc_input_ids: Optional[List[int]] = None,
        desc_attention_mask: Optional[List[int]] = None,
        label_embeddings : Optional[torch.Tensor] = None,
        clustered_input_ids: Optional[torch.Tensor] = None,
        clustered_desc_ids: Optional[torch.Tensor] = None, 
    ) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]:


        if self.coil:
            return self.coil_forward(
                input_ids, 
                attention_mask,
                token_type_ids,
                labels,
                desc_input_ids,
                desc_attention_mask,
                desc_inputs_embeds,
                return_dict,
                clustered_input_ids,
                clustered_desc_ids,
            )

        # STEP 2: Forward pass through the input model
        
        outputs, logits = self.forward_input_encoder(input_ids, attention_mask, token_type_ids)

        if self.semsup:
            if desc_input_ids is None:
                all_candidate_labels = torch.arange(labels.shape[1]).repeat((labels.shape[0], 1))
                label_embeddings, list_to_set_mapping, num_candidates = self.forward_label_embeddings(all_candidate_labels, label_desc_ids)
                logits = self.semsup_forward(logits, label_embeddings, num_candidates, list_to_set_mapping)
            else:
                label_embeddings, _, _ = self.forward_label_embeddings(None, None, desc_input_ids = desc_input_ids, desc_attention_mask = desc_attention_mask, desc_inputs_embeds = desc_inputs_embeds)
                logits = self.semsup_forward(logits, label_embeddings.reshape(desc_input_ids.shape[0], desc_input_ids.shape[1], -1).contiguous(), same_labels= True)

        elif label_embeddings is not None:
            logits = self.semsup_forward(logits, label_embeddings.contiguous() @ self.label_projection.weight, same_labels= True)
        loss_fn = BCEWithLogitsLoss()
        loss = loss_fn(logits, labels)

 
        if not return_dict: 
            output = (logits,) + outputs[2:] + (logits,)
            return ((loss,) + output) if loss is not None else output

        return SequenceClassifierOutput(
            loss=loss,
            logits=logits,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )