Spaces:
Runtime error
Runtime error
File size: 12,203 Bytes
4014562 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 |
from typing import Optional
from dataclasses import dataclass, field
from .constants import task_to_keys
from transformers import TrainingArguments
@dataclass
class CustomTrainingArguments(TrainingArguments):
output_learning_rate: Optional[float] = field(
default=5e-5,
metadata={"help": "The learning rate for the output encodeer of the model."}
)
place_model_on_device: Optional[bool] = field(
default=True,
metadata={"help" : "Useful if doing hyperparam search"}
)
scenario: Optional[str] = field(
default="seen", # Options: seen, unseen_labels
metadata={"help": "The scenario to use for training."}
)
one_hour_job : Optional[bool] = field(
default = False,
metadata = {"help" : "Incase its a sequence of jobs, we will do advance management of checkpoints."}
)
@dataclass
class DataTrainingArguments:
"""
Arguments pertaining to what data we are going to input our model for training and eval.
Using `HfArgumentParser` we can turn this class
into argparse arguments to be able to specify them on
the command line.
"""
all_labels : Optional[str] = field(
default=None,
metadata={"help": "The file containing all the labels. Mandatory if doing unseen labels"}
)
test_labels : Optional[str] = field(
default=None,
metadata={"help": "The file containing all the test labels."}
)
max_descs_per_label : Optional[int] = field(
default = 999999,
metadata={"help": "Restrict number of descriptions to be included per label"}
)
task_name: Optional[str] = field(
default=None,
metadata={"help": "The name of the task to train on: " + ", ".join(task_to_keys.keys())},
)
dataset_name: Optional[str] = field(
default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
)
dataset_config_name: Optional[str] = field(
default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
)
max_seq_length: int = field(
default=128,
metadata={
"help": (
"The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
)
},
)
overwrite_cache: bool = field(
default=False, metadata={"help": "Overwrite the cached preprocessed datasets or not."}
)
pad_to_max_length: bool = field(
default=True,
metadata={
"help": (
"Whether to pad all samples to `max_seq_length`. "
"If False, will pad the samples dynamically when batching to the maximum length in the batch."
)
},
)
load_from_local: bool = field(
default=False,
metadata={"help": "Whether to load the dataset from local or not."},
)
max_train_samples: Optional[int] = field(
default=None,
metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of training examples to this "
"value if set."
)
},
)
max_eval_samples: Optional[int] = field(
default=None,
metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of evaluation examples to this "
"value if set."
)
},
)
max_predict_samples: Optional[int] = field(
default=None,
metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of prediction examples to this "
"value if set."
)
},
)
train_file: Optional[str] = field(
default=None, metadata={"help": "A csv or a json file containing the training data."}
)
validation_file: Optional[str] = field(
default=None, metadata={"help": "A csv or a json file containing the validation data."}
)
test_file: Optional[str] = field(default=None, metadata={"help": "A csv or a json file containing the test data."})
label_max_seq_length: int = field(default=32)
contrastive_learning_samples : Optional[int] = field(
default=-1,
metadata={"help": "Number of samples to use for contrastive learning."},
)
cl_min_positive_descs : Optional[int] = field(
default=20,
metadata={"help": "Minimum number of positive descriptions to use for contrastive learning."},
)
descriptions_file : Optional[str] = field(
# default='datasets/EUR-Lex/all_descriptions.json',
default='datasets/EUR-Lex/eurlex-4k-class_descriptions_v1.json',
metadata={"help": "A json file containing the descriptions."},
)
test_descriptions_file : Optional[str] = field(
default='', # If empty, automatically make equal to descriptions_file
metadata={"help": "A json file containing the test descriptions."},
)
cluster_path: Optional[str] = field(
default='datasets/EUR-Lex/label_group_lightxml_0.npy',
metadata={"help": "Path to the cluster file."},
)
num_clusters: int = field(
default=64,
metadata={"help": "Number of clusters in the cluster file."},
)
hyper_search: bool = field(
default=False,
metadata={"help": "Perform Hp Search"},
)
bm_short_file: str = field(
default = '',
metadata = {"help": "BM Shortlist File to use for contrastive sampling"}
)
large_dset: bool = field(
default = False,
metadata = {"help" : "Dataset is modified in a way such that whole train set is not loaded"}
)
tokenized_descs_file: bool = field(
default = False,
metadata = {"help" : "Load the precomputed tokenized descriptions to speed up the process"}
)
train_tfidf_short: str = field(
default = '',
metadata = {"help" : "Shortlists based on the tf-idf values"}
)
test_tfidf_short: str = field(
default = '',
metadata = {"help" : "Shortlists based on the tf-idf values"}
)
ignore_pos_labels_file : str = field(
default = '',
metadata = {"help" : "Useful in fs setting"}
)
tok_format: int = field(
default = -1,
metadata = {"help" : "Tokenized Format for large datasets"}
)
coil_cluster_mapping_path : str = field(
default = '',
metadata = {"help" : "Clustering for coil matching based on BERT"}
)
random_sample_seed: int = field(
default=-1,
metadata={"help": "Random seed for eval sampling"},
)
def __post_init__(self):
if self.task_name is not None:
self.task_name = self.task_name.lower()
if self.task_name not in task_to_keys.keys():
raise ValueError("Unknown task, you should pick one in " + ",".join(task_to_keys.keys()))
elif self.dataset_name is not None:
pass
elif self.train_file is None or self.validation_file is None:
raise ValueError("Need either a GLUE task, a training/validation file or a dataset name.")
else:
train_extension = self.train_file.split(".")[-1]
assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file."
validation_extension = self.validation_file.split(".")[-1]
assert (
validation_extension == train_extension
), "`validation_file` should have the same extension (csv or json) as `train_file`."
@dataclass
class ModelArguments:
"""
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
"""
model_name_or_path: str = field(
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
)
config_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
)
tokenizer_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
)
cache_dir: Optional[str] = field(
default=None,
metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
)
use_fast_tokenizer: bool = field(
default=True,
metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
)
model_revision: str = field(
default="main",
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
)
use_auth_token: bool = field(
default=False,
metadata={
"help": (
"Will use the token generated when running `transformers-cli login` (necessary to use this script "
"with private models)."
)
},
)
ignore_mismatched_sizes: bool = field(
default=False,
metadata={"help": "Will enable to load a pretrained model whose head dimensions are different."},
)
negative_sampling: Optional[str] = field(
default="none",
metadata={"help": "Whether to use negative sampling or not. Can be either `lightxml` or `none`."},
)
semsup : Optional[bool] = field(
default=False,
metadata={"help": "Whether to use semantic supervision or not."},
)
label_model_name_or_path: Optional[str] = field(
default='bert-base-uncased',
metadata={"help": "The name or path of the label model to use."},
)
encoder_model_type: Optional[str] = field(
default = 'bert',
metadata={"help": "Type of encoder to use. Options: bert, roberta, xlnet"},
)
use_custom_optimizer: Optional[str] = field(
default=None,
metadata={"help": "Custom optimizer to use. Options: adamw"},
)
arch_type: Optional[int] = field(
default=2,
metadata={"help": '''Model architecture to use. Options: 1,2,3.\n1 -> LightXML Based\n2 -> No hidden layer\n3 -> Smaller Embedding Size'''},
)
devise: Optional[bool] = field(
default = False,
metadata = {"help" : 'Use Device Baseline'}
)
add_label_name : Optional[bool] = field(
default = False,
metadata = {"help" : "Adds label name in beginning of all descriptions"}
)
normalize_embeddings : Optional[bool] = field(
default = False,
metadata = {"help" : "Normalize Embeddings of input and output encoders before inner product."}
)
tie_weights : Optional[bool] = field(
default = False,
metadata = {"help" : "Tie the Input & Label Transformer Weights(First 11 Layers) ."}
)
coil : Optional[bool] = field(
default = False,
metadata = {"help" : "Use COILBert Variant"}
)
colbert: Optional[bool] = field(
default = False,
metadata = {"help" : "Use COLBert, Note: coil must be set true"}
)
use_precomputed_embeddings : Optional[str] = field(
default = '',
metadata = {"help" : "PreComputed Embeddings Upto Level 9 of Bert for descriptions"}
)
token_dim : Optional[int] = field(
default = 16,
metadata = {"help": "Token Dimension for COILBert"}
)
pretrained_model_path : Optional[str] = field(
default = '',
metadata = {"help" : "Use Pretrained Model for Finetuning (few shot setting)"}
)
pretrained_label_model_path : Optional[str] = field(
default = '',
metadata = {"help" : "Use Pretrained Label Model for Finetuning (few shot setting)"}
)
num_frozen_layers : Optional[int] = field(
default = 0,
metadata = {
"help" : "Freeze Input Encoder Layer"
}
)
label_frozen_layers : Optional[int] = field(
default = 0,
metadata = {
"help" : "Freeze Input Encoder Layer"
}
) |