Spaces:
Runtime error
Runtime error
EXP_NAME: "semsup_descs_100ep_newds_cosine" | |
EXP_DESC: "SemSup Descriptions ran for 100 epochs" | |
DATA: | |
task_name: wiki1m | |
dataset_name: wiki1m | |
dataset_config_name: null | |
max_seq_length: 512 | |
overwrite_output_dir: false # Set to false, if using one_hour_job | |
overwrite_cache: false | |
pad_to_max_length: true | |
load_from_local: true | |
max_train_samples: null | |
max_eval_samples: null | |
max_predict_samples: null | |
train_file: datasets/Wiki1M/train.jsonl | |
validation_file: datasets/Wiki1M/test_unseen.jsonl | |
test_file: datasets/Wiki1M/test_unseen.jsonl | |
label_max_seq_length: 96 # For names baseline | |
# descriptions_file: datasets/Wiki1M/amzn_curie_descsriptions.json | |
# descriptions_file: datasets/Wiki1M/ner_desc.json | |
descriptions_file: datasets/Wiki1M/wiki_all_final_descs_fixed_dedup.json | |
all_labels : datasets/Wiki1M/all_labels.txt | |
test_labels: datasets/Wiki1M/unseen_labels.txt | |
large_dset: true | |
# tokenized_descs_file: datasets/Wiki1M/tokenized_ner_descs_final_new.npy | |
tokenized_descs_file: datasets/Wiki1M/tokenized_ner_descs_final_fixed_dedup96.npy | |
# train_tfidf_short: datasets/Wiki1M/train_shortlists_4K_fixed.h5 | |
train_tfidf_short: datasets/Wiki1M/train_shortlists_4K_1000.h5 | |
# test_tfidf_short: datasets/Wiki1M/test_unseen_shortlists_4K.h5 | |
test_tfidf_short: datasets/Wiki1M/test_unseen_shortlists_4K_fixed.h5 | |
tok_format: 1 | |
# max_descs_per_label: 5 | |
# contrastive_learning_samples: 1000 | |
# cl_min_positive_descs: 1 | |
# bm_short_file: datasets/eurlex4.3k/train_bmshort.txt | |
# ignore_pos_labels_file: datasets/Amzn13K/ignore_train_split6500_fs5.txt | |
coil_cluster_mapping_path: bert_coil_map_dict_lemma255K_isotropic.json | |
MODEL: | |
model_name_or_path: bert-base-uncased | |
# pretrained_model_path: output/semsup_descs_amzn13k_web_6500_small/checkpoint-20000/pytorch_model.bin | |
config_name: null | |
tokenizer_name: null | |
cache_dir: null | |
use_fast_tokenizer: true | |
model_revision: main | |
use_auth_token: false | |
ignore_mismatched_sizes: false | |
negative_sampling: "none" | |
semsup: true | |
# label_model_name_or_path: bert-base-uncased # prajjwal1/bert-small | |
label_model_name_or_path: prajjwal1/bert-small | |
encoder_model_type: bert | |
use_custom_optimizer: adamw | |
output_learning_rate: 1.e-4 | |
arch_type : 2 | |
add_label_name: false | |
normalize_embeddings: false | |
tie_weights: false | |
coil: true | |
colbert: false | |
# use_precomputed_embeddings: datasets/eurlex4.3k/heir_withdescriptions_4.3k_v1_embs_bert_9_96.npy | |
token_dim: 16 | |
label_frozen_layers: 2 | |
TRAINING: | |
do_train: true | |
do_eval: true | |
do_predict: false | |
per_device_train_batch_size: 2 | |
gradient_accumulation_steps: 4 | |
per_device_eval_batch_size: 1 | |
learning_rate: 5.e-5 # Will point to input encoder lr, if user_custom_optimizer is False | |
num_train_epochs: 1 | |
save_steps: 20000 | |
evaluation_strategy: steps | |
eval_steps: 5000 | |
fp16: true | |
fp16_opt_level: O1 | |
lr_scheduler_type: "linear" # defaults to 'linear' | |
dataloader_num_workers: 16 | |
label_names: [labels] | |
scenario: "unseen_labels" | |
ddp_find_unused_parameters: false | |
max_eval_samples: 15000 | |
ignore_data_skip: true | |
# one_hour_job: true | |