File size: 8,786 Bytes
3c77625
 
 
 
 
 
 
 
 
 
 
 
8fe3995
3c77625
 
 
8fe3995
 
 
 
3c77625
 
8fe3995
 
3c77625
e81e578
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c77625
8fe3995
 
 
 
 
d3f2a71
3c77625
aa43490
8fe3995
 
 
 
3c77625
 
 
 
 
8fe3995
3c77625
 
 
 
 
 
 
 
 
8fe3995
3c77625
 
 
e0196a9
3c77625
 
 
 
 
 
 
 
 
e81e578
3c77625
 
e0196a9
3c77625
 
 
 
 
 
 
 
b5e8200
3c77625
 
 
 
 
 
 
 
 
b665872
3c77625
 
 
 
 
 
b665872
3c77625
 
 
 
 
b665872
3c77625
8fe3995
e81e578
3434018
3c77625
 
8fe3995
3c77625
 
 
 
 
 
 
 
 
8fe3995
83c8d0b
7bf75d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c77625
 
 
b665872
baa6caf
 
3c77625
 
 
 
 
 
 
7bf75d4
 
3c77625
 
 
8fe3995
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
import yfinance as yf
import pandas as pd
import numpy as np
import torch
import joblib
from tqdm import tqdm
from modeling_stockllama import StockLlamaForForecasting
from configuration_stockllama import StockLlamaConfig
from peft import LoraConfig, get_peft_model
from datasets import Dataset
import os
from transformers import Trainer, TrainingArguments
from huggingface_hub import login, upload_file, hf_hub_download
import wandb
import gradio as gr
import spaces
from huggingface_hub import HfApi

hf_api = HfApi()

HF_TOKEN = os.getenv('HF_TOKEN')
WANDB_TOKEN = os.getenv('WANDB_TOKEN')
login(token=HF_TOKEN)
wandb.login(key=WANDB_TOKEN)

class Scaler:
    def __init__(self, feature_range):
        self.feature_range = feature_range
        self.min_df = None
        self.max_df = None

    def fit(self, df: pd.Series):
        self.min_df = df.min()
        self.max_df = df.max()

    def transform(self, df: pd.Series) -> pd.Series:
        min_val, max_val = self.feature_range
        scaled_df = (df - self.min_df) / (self.max_df - self.min_df)
        scaled_df = scaled_df * (max_val - min_val) + min_val
        return scaled_df

    def inverse_transform(self, X: np.ndarray) -> np.ndarray:
        min_val, max_val = self.feature_range
        min_x, max_x = np.min(X), np.max(X)
        return (X - min_x) / (max_x - min_x) * (max_val - min_val) + min_val

def check_existing_model(stock_symbol, start_date, end_date):
    repo_id = f"Q-bert/StockLlama-tuned-{stock_symbol}-{stock_symbol}-{start_date}_{end_date}"
    state = repo_id in [model.modelId for model in hf_api.list_models()]
    return state
    
@spaces.GPU(duration=300)
def train_stock_model(stock_symbol, start_date, end_date, feature_range=(10, 100), data_seq_length=256, epochs=10, batch_size=16, learning_rate=2e-4):
    repo_id = f"Q-bert/StockLlama-tuned{stock_symbol}-{start_date}_{end_date}"

    if check_existing_model(stock_symbol, start_date, end_date):
        return f"Model for {stock_symbol} from {start_date} to {end_date} already exists."

    try:
        stock_data = yf.download(stock_symbol, start=start_date, end=end_date, progress=False)
    except Exception as e:
        print(f"Error downloading data for {stock_symbol}: {e}")
        return

    data = stock_data["Close"]

    scaler = Scaler(feature_range)
    scaler.fit(data)
    scaled_data = scaler.transform(data)

    seq = [np.array(scaled_data[i:i + data_seq_length]) for i in range(len(scaled_data) - data_seq_length)]
    target = [np.array(scaled_data[i + data_seq_length:i + data_seq_length + 1]) for i in range(len(scaled_data) - data_seq_length)]

    seq_tensors = [torch.tensor(s, dtype=torch.float32) for s in seq]
    target_tensors = [t[0] for t in target]

    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    model = StockLlamaForForecasting.from_pretrained("StockLlama/StockLlama-base-v1").to(device)
    config = LoraConfig(
        r=64,
        lora_alpha=32,
        target_modules=["q_proj", "v_proj", "o_proj", "k_proj"],
        lora_dropout=0.05,
        bias="none",
        task_type="CAUSAL_LM",
    )
    model = get_peft_model(model, config)

    dct = {"input_ids": seq_tensors, "label": target_tensors}
    dataset = Dataset.from_dict(dct)
    dataset.push_to_hub(f"StockLlama/{stock_symbol}-{start_date}_{end_date}")
    trainer = Trainer(
        model=model,
        train_dataset=dataset,
        args=TrainingArguments(
            per_device_train_batch_size=batch_size,
            gradient_accumulation_steps=4,
            num_train_epochs=epochs,
            warmup_steps=5,
            save_steps=10,
            learning_rate=learning_rate,
            fp16=True,
            logging_steps=1,
            push_to_hub=True,
            report_to="wandb",
            optim="adamw_torch",
            weight_decay=0.01,
            lr_scheduler_type="linear",
            seed=3407,
            output_dir=f"StockLlama/StockLlama-LoRA-{stock_symbol}-{start_date}_{end_date}",
        ),
    )
    
    trainer.train()

    model = model.merge_and_unload()
    model.push_to_hub(f"StockLlama/StockLlama-tuned-{stock_symbol}-{start_date}_{end_date}")
    scaler_path = "scaler.joblib"
    joblib.dump(scaler, scaler_path)
    upload_file(
        path_or_fileobj=scaler_path,
        path_in_repo=f"scalers/{scaler_path}",
        repo_id=f"StockLlama/StockLlama-tuned-{stock_symbol}-{start_date}_{end_date}"
    )
    return f"Training completed and model saved for {stock_symbol} from {start_date} to {end_date}."

@spaces.GPU(duration=300)
def gradio_train_stock_model(stock_symbol, start_date, end_date, feature_range_min, feature_range_max, data_seq_length, epochs, batch_size, learning_rate):
    feature_range = (feature_range_min, feature_range_max)
    result = train_stock_model(
        stock_symbol=stock_symbol,
        start_date=start_date,
        end_date=end_date,
        feature_range=feature_range,
        data_seq_length=data_seq_length,
        epochs=epochs,
        batch_size=batch_size,
        learning_rate=learning_rate
    )
    return result

title = "StockLlama-TrainOnAnyStock"
description = """
## StockLlama
![The Logo](https://private-user-images.githubusercontent.com/119312866/361069298-11d12a8f-63b8-42ce-b66c-d77924831e90.png?jwt=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJnaXRodWIuY29tIiwiYXVkIjoicmF3LmdpdGh1YnVzZXJjb250ZW50LmNvbSIsImtleSI6ImtleTUiLCJleHAiOjE3MjQ2MDYwMTcsIm5iZiI6MTcyNDYwNTcxNywicGF0aCI6Ii8xMTkzMTI4NjYvMzYxMDY5Mjk4LTExZDEyYThmLTYzYjgtNDJjZS1iNjZjLWQ3NzkyNDgzMWU5MC5wbmc_WC1BbXotQWxnb3JpdGhtPUFXUzQtSE1BQy1TSEEyNTYmWC1BbXotQ3JlZGVudGlhbD1BS0lBVkNPRFlMU0E1M1BRSzRaQSUyRjIwMjQwODI1JTJGdXMtZWFzdC0xJTJGczMlMkZhd3M0X3JlcXVlc3QmWC1BbXotRGF0ZT0yMDI0MDgyNVQxNzA4MzdaJlgtQW16LUV4cGlyZXM9MzAwJlgtQW16LVNpZ25hdHVyZT05ZmUyOWQ4Nzc5YjU0YmZlNGYyMjRmZGY4OWRhYTk5MWZjZGRkMGIzZDQ1YjAwZmQwM2YyY2RkNTcyZmE2ZjgwJlgtQW16LVNpZ25lZEhlYWRlcnM9aG9zdCZhY3Rvcl9pZD0wJmtleV9pZD0wJnJlcG9faWQ9MCJ9.Oz-_THt_8gGhVod5cCURKaeepzvTGXqGeLi_MkRm09g)
### Description
StockLlama is a time series forecasting pre-trained model based on Llama, enhanced with custom embeddings for improved accuracy.
### How It Works
**Data Collection:** The model retrieves historical stock price data using the yfinance library. Users specify the stock symbol, date range, and other parameters through a Gradio interface.

**Data Preprocessing:** The collected stock prices are scaled to a specified range using a custom Scaler class. The data is then divided into sequences of a defined length, with each sequence serving as input to the model and the next data point as the target.

**Model Architecture:** StockLlama is a modified version of the Llama model, specifically tailored for time series forecasting. The model is enhanced with custom embeddings and fine-tuned using a LoRA (Low-Rank Adaptation) configuration, allowing for efficient training on the specific stock data.

**Training Process:** The training is managed using the Hugging Face Trainer class. The model learns to predict the next data point in the sequence, optimizing its weights over multiple epochs. The training process can be monitored via Weights & Biases integration.

**Deployment:** After training, the model is pushed to the Hugging Face Hub, making it accessible for future predictions. The scaler used for data normalization is also saved and uploaded, ensuring that new data can be correctly transformed and predictions can be accurately descaled.

### Contributing
Contributions to this project are welcome! If you find any issues or want to add new features, feel free to open an issue or submit a pull request.
### License
This project is licensed under the [Apache 2.0 License](https://opensource.org/license/apache-2-0).
### Credits
The StockLlama model used in this project is based on the work by [Talha Rüzgar Akkuş](https://www.linkedin.com/in/talha-r%C3%BCzgar-akku%C5%9F-1b5457264/).
"""
iface = gr.Interface(
    fn=gradio_train_stock_model,
    inputs=[
        gr.Textbox(label="Stock Symbol", value="BTC-USD"),
        gr.Textbox(label="Start Date", value="2023-01-01"),
        gr.Textbox(label="End Date", value="2024-08-24"),
        gr.Slider(minimum=0, maximum=100, step=1, label="Feature Range Min", value=10),
        gr.Slider(minimum=0, maximum=100, step=1, label="Feature Range Max", value=100),
        gr.Slider(minimum=1, maximum=512, step=1, label="Data Sequence Length", value=256),
        gr.Slider(minimum=1, maximum=50, step=1, label="Epochs", value=10),
        gr.Slider(minimum=1, maximum=64, step=1, label="Batch Size", value=16),
        gr.Slider(minimum=1e-5, maximum=1e-1, step=1e-5, label="Learning Rate", value=2e-4)
    ],
    description=description,
    title=title,
    outputs="text",
)

iface.launch()