Spaces:
Running
on
Zero
Running
on
Zero
File size: 8,045 Bytes
3c77625 8fe3995 3c77625 8fe3995 3c77625 8fe3995 3c77625 e81e578 3c77625 8fe3995 731e76c 3c77625 aa43490 8fe3995 3c77625 8fe3995 3c77625 8fe3995 3c77625 e0196a9 3c77625 e81e578 3c77625 e0196a9 3c77625 b5e8200 3c77625 b665872 3c77625 b665872 3c77625 b665872 3c77625 8fe3995 e81e578 731e76c 3c77625 8fe3995 3c77625 8fe3995 83c8d0b 7bf75d4 72b5c5b 7bf75d4 3c77625 b665872 baa6caf 3c77625 7bf75d4 3c77625 8fe3995 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 |
import yfinance as yf
import pandas as pd
import numpy as np
import torch
import joblib
from tqdm import tqdm
from modeling_stockllama import StockLlamaForForecasting
from configuration_stockllama import StockLlamaConfig
from peft import LoraConfig, get_peft_model
from datasets import Dataset
import os
from transformers import Trainer, TrainingArguments
from huggingface_hub import login, upload_file, hf_hub_download
import wandb
import gradio as gr
import spaces
from huggingface_hub import HfApi
hf_api = HfApi()
HF_TOKEN = os.getenv('HF_TOKEN')
WANDB_TOKEN = os.getenv('WANDB_TOKEN')
login(token=HF_TOKEN)
wandb.login(key=WANDB_TOKEN)
class Scaler:
def __init__(self, feature_range):
self.feature_range = feature_range
self.min_df = None
self.max_df = None
def fit(self, df: pd.Series):
self.min_df = df.min()
self.max_df = df.max()
def transform(self, df: pd.Series) -> pd.Series:
min_val, max_val = self.feature_range
scaled_df = (df - self.min_df) / (self.max_df - self.min_df)
scaled_df = scaled_df * (max_val - min_val) + min_val
return scaled_df
def inverse_transform(self, X: np.ndarray) -> np.ndarray:
min_val, max_val = self.feature_range
min_x, max_x = np.min(X), np.max(X)
return (X - min_x) / (max_x - min_x) * (max_val - min_val) + min_val
def check_existing_model(stock_symbol, start_date, end_date):
repo_id = f"Q-bert/StockLlama-tuned-{stock_symbol}-{stock_symbol}-{start_date}_{end_date}"
state = repo_id in [model.modelId for model in hf_api.list_models()]
return state
@spaces.GPU(duration=120)
def train_stock_model(stock_symbol, start_date, end_date, feature_range=(10, 100), data_seq_length=256, epochs=10, batch_size=16, learning_rate=2e-4):
repo_id = f"Q-bert/StockLlama-tuned{stock_symbol}-{start_date}_{end_date}"
if check_existing_model(stock_symbol, start_date, end_date):
return f"Model for {stock_symbol} from {start_date} to {end_date} already exists."
try:
stock_data = yf.download(stock_symbol, start=start_date, end=end_date, progress=False)
except Exception as e:
print(f"Error downloading data for {stock_symbol}: {e}")
return
data = stock_data["Close"]
scaler = Scaler(feature_range)
scaler.fit(data)
scaled_data = scaler.transform(data)
seq = [np.array(scaled_data[i:i + data_seq_length]) for i in range(len(scaled_data) - data_seq_length)]
target = [np.array(scaled_data[i + data_seq_length:i + data_seq_length + 1]) for i in range(len(scaled_data) - data_seq_length)]
seq_tensors = [torch.tensor(s, dtype=torch.float32) for s in seq]
target_tensors = [t[0] for t in target]
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = StockLlamaForForecasting.from_pretrained("StockLlama/StockLlama-base-v1").to(device)
config = LoraConfig(
r=64,
lora_alpha=32,
target_modules=["q_proj", "v_proj", "o_proj", "k_proj"],
lora_dropout=0.05,
bias="none",
task_type="CAUSAL_LM",
)
model = get_peft_model(model, config)
dct = {"input_ids": seq_tensors, "label": target_tensors}
dataset = Dataset.from_dict(dct)
dataset.push_to_hub(f"StockLlama/{stock_symbol}-{start_date}_{end_date}")
trainer = Trainer(
model=model,
train_dataset=dataset,
args=TrainingArguments(
per_device_train_batch_size=batch_size,
gradient_accumulation_steps=4,
num_train_epochs=epochs,
warmup_steps=5,
save_steps=10,
learning_rate=learning_rate,
fp16=True,
logging_steps=1,
push_to_hub=True,
report_to="wandb",
optim="adamw_torch",
weight_decay=0.01,
lr_scheduler_type="linear",
seed=3407,
output_dir=f"StockLlama/StockLlama-LoRA-{stock_symbol}-{start_date}_{end_date}",
),
)
trainer.train()
model = model.merge_and_unload()
model.push_to_hub(f"StockLlama/StockLlama-tuned-{stock_symbol}-{start_date}_{end_date}")
scaler_path = "scaler.joblib"
joblib.dump(scaler, scaler_path)
upload_file(
path_or_fileobj=scaler_path,
path_in_repo=f"scalers/{scaler_path}",
repo_id=f"StockLlama/StockLlama-tuned-{stock_symbol}-{start_date}_{end_date}"
)
return f"Training completed and model saved for {stock_symbol} from {start_date} to {end_date}."
@spaces.GPU(duration=120)
def gradio_train_stock_model(stock_symbol, start_date, end_date, feature_range_min, feature_range_max, data_seq_length, epochs, batch_size, learning_rate):
feature_range = (feature_range_min, feature_range_max)
result = train_stock_model(
stock_symbol=stock_symbol,
start_date=start_date,
end_date=end_date,
feature_range=feature_range,
data_seq_length=data_seq_length,
epochs=epochs,
batch_size=batch_size,
learning_rate=learning_rate
)
return result
title = "StockLlama-TrainOnAnyStock"
description = """
## StockLlama
![The Logo](https://i.ibb.co/qBfBDr5/Whats-App-G-rsel-2024-08-24-saat-00-56-37-f466d65d.jpg)
### Description
StockLlama is a time series forecasting pre-trained model based on Llama, enhanced with custom embeddings for improved accuracy.
### How It Works
**Data Collection:** The model retrieves historical stock price data using the yfinance library. Users specify the stock symbol, date range, and other parameters through a Gradio interface.
**Data Preprocessing:** The collected stock prices are scaled to a specified range using a custom Scaler class. The data is then divided into sequences of a defined length, with each sequence serving as input to the model and the next data point as the target.
**Model Architecture:** StockLlama is a modified version of the Llama model, specifically tailored for time series forecasting. The model is enhanced with custom embeddings and fine-tuned using a LoRA (Low-Rank Adaptation) configuration, allowing for efficient training on the specific stock data.
**Training Process:** The training is managed using the Hugging Face Trainer class. The model learns to predict the next data point in the sequence, optimizing its weights over multiple epochs. The training process can be monitored via Weights & Biases integration.
**Deployment:** After training, the model is pushed to the Hugging Face Hub, making it accessible for future predictions. The scaler used for data normalization is also saved and uploaded, ensuring that new data can be correctly transformed and predictions can be accurately descaled.
### Contributing
Contributions to this project are welcome! If you find any issues or want to add new features, feel free to open an issue or submit a pull request.
### License
This project is licensed under the [Apache 2.0 License](https://opensource.org/license/apache-2-0).
### Credits
The StockLlama model used in this project is based on the work by [Talha Rüzgar Akkuş](https://www.linkedin.com/in/talha-r%C3%BCzgar-akku%C5%9F-1b5457264/).
"""
iface = gr.Interface(
fn=gradio_train_stock_model,
inputs=[
gr.Textbox(label="Stock Symbol", value="BTC-USD"),
gr.Textbox(label="Start Date", value="2023-01-01"),
gr.Textbox(label="End Date", value="2024-08-24"),
gr.Slider(minimum=0, maximum=100, step=1, label="Feature Range Min", value=10),
gr.Slider(minimum=0, maximum=100, step=1, label="Feature Range Max", value=100),
gr.Slider(minimum=1, maximum=512, step=1, label="Data Sequence Length", value=256),
gr.Slider(minimum=1, maximum=50, step=1, label="Epochs", value=10),
gr.Slider(minimum=1, maximum=64, step=1, label="Batch Size", value=16),
gr.Slider(minimum=1e-5, maximum=1e-1, step=1e-5, label="Learning Rate", value=2e-4)
],
description=description,
title=title,
outputs="text",
)
iface.launch() |