File size: 13,357 Bytes
7ed286f
 
 
 
 
 
 
 
a6a5509
 
7ed286f
 
 
 
 
 
 
 
 
 
07903ab
 
 
 
 
 
 
 
 
 
24020bb
07903ab
 
 
 
24020bb
 
7ed286f
 
07903ab
7ed286f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
07903ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7ed286f
 
 
07903ab
 
7ed286f
 
 
 
 
 
 
 
 
 
 
 
 
24020bb
7ed286f
 
 
 
 
 
07903ab
 
7ed286f
 
07903ab
 
7ed286f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24020bb
 
7ed286f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
07903ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7ed286f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
07903ab
 
 
7ed286f
07903ab
 
7ed286f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
07903ab
 
7ed286f
 
 
 
 
07903ab
7ed286f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
07903ab
7ed286f
07903ab
 
 
 
 
7ed286f
 
 
07903ab
7ed286f
 
 
 
 
 
 
 
07903ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7ed286f
07903ab
7ed286f
 
 
 
07903ab
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
import gradio as gr
from pathlib import Path
import time

import pandas as pd
import re
import time
import os
import requests
import json

import whisper
from pytube import YouTube

import torch


# is cuda available?


num_cores = psutil.cpu_count()
os.environ["OMP_NUM_THREADS"] = f"{num_cores}"
headers = {'Authorization': os.environ['DeepL_API_KEY']}

device = "cpu"#torch.device("cuda" if torch.cuda.is_available() else "cpu")
print("DEVICE IS: ")
print(device)

asr_model_base = whisper.load_model("base", device=device)
asr_model_small = whisper.load_model("small", device=device)
whisper_models_dict = {
    'base': asr_model_base,
    'small': asr_model_small
}

whisper_models = ["base", "small"]

transcribe_options = dict(beam_size=3, best_of=3, without_timestamps=False)

source_languages  = {
"Afrikaans":"af",
"Amharic":"am",
"Arabic":"ar",
"Asturian ":"st",
"Azerbaijani":"az",
"Bashkir":"ba",
"Belarusian":"be",
"Bulgarian":"bg",
"Bengali":"bn",
"Breton":"br",
"Bosnian":"bs",
"Catalan; Valencian":"ca",
"Cebuano":"eb",
"Czech":"cs",
"Welsh":"cy",
"Danish":"da",
"German":"de",
"Greeek":"el",
"English":"en",
"Spanish":"es",
"Estonian":"et",
"Persian":"fa",
"Fulah":"ff",
"Finnish":"fi",
"French":"fr",
"Western Frisian":"fy",
"Irish":"ga",
"Gaelic; Scottish Gaelic":"gd",
"Galician":"gl",
"Gujarati":"gu",
"Hausa":"ha",
"Hebrew":"he",
"Hindi":"hi",
"Croatian":"hr",
"Haitian; Haitian Creole":"ht",
"Hungarian":"hu",
"Armenian":"hy",
"Indonesian":"id",
"Igbo":"ig",
"Iloko":"lo",
"Icelandic":"is",
"Italian":"it",
"Japanese":"ja",
"Javanese":"jv",
"Georgian":"ka",
"Kazakh":"kk",
"Central Khmer":"km",
"Kannada":"kn",
"Korean":"ko",
"Luxembourgish; Letzeburgesch":"lb",
"Ganda":"lg",
"Lingala":"ln",
"Lao":"lo",
"Lithuanian":"lt",
"Latvian":"lv",
"Malagasy":"mg",
"Macedonian":"mk",
"Malayalam":"ml",
"Mongolian":"mn",
"Marathi":"mr",
"Malay":"ms",
"Burmese":"my",
"Nepali":"ne",
"Dutch; Flemish":"nl",
"Norwegian":"no",
"Northern Sotho":"ns",
"Occitan (post 1500)":"oc",
"Oriya":"or",
"Panjabi; Punjabi":"pa",
"Polish":"pl",
"Pushto; Pashto":"ps",
"Portuguese":"pt",
"Romanian; Moldavian; Moldovan":"ro",
"Russian":"ru",
"Sindhi":"sd",
"Sinhala; Sinhalese":"si",
"Slovak":"sk",
"Slovenian":"sl",
"Somali":"so",
"Albanian":"sq",
"Serbian":"sr",
"Swati":"ss",
"Sundanese":"su",
"Swedish":"sv",
"Swahili":"sw",
"Tamil":"ta",
"Thai":"th",
"Tagalog":"tl",
"Tswana":"tn",
"Turkish":"tr",
"Ukrainian":"uk",
"Urdu":"ur",
"Uzbek":"uz",
"Vietnamese":"vi",
"Wolof":"wo",
"Xhosa":"xh",
"Yiddish":"yi",
"Yoruba":"yo",
"Chinese":"zh",
"Zulu":"zu",
"Let the model analyze": "Let the model analyze"
}

DeepL_language_codes_for_translation = {
"Bulgarian": "BG",
"Czech": "CS",
"Danish": "DA",
"German": "DE",
"Greek": "EL",
"English": "EN",
"Spanish": "ES",
"Estonian": "ET",
"Finnish": "FI",
"French": "FR",
"Hungarian": "HU",
"Indonesian": "ID",
"Italian": "IT",
"Japanese": "JA",
"Lithuanian": "LT",
"Latvian": "LV",
"Dutch": "NL",
"Polish": "PL",
"Portuguese": "PT",
"Romanian": "RO",
"Russian": "RU",
"Slovak": "SK",
"Slovenian": "SL",
"Swedish": "SV",
"Turkish": "TR",
"Ukrainian": "UK",
"Chinese": "ZH"
}


source_language_list = [key[0] for key in source_languages.items()]
translation_models_list = [key[0] for key in DeepL_language_codes_for_translation.items()]

  
videos_out_path = Path("./videos_out")
videos_out_path.mkdir(parents=True, exist_ok=True)

def get_youtube(video_url):
    yt = YouTube(video_url)
    abs_video_path = yt.streams.filter(progressive=True, file_extension='mp4').order_by('resolution').desc().first().download()
    print("LADATATTU POLKUUN")
    print(abs_video_path)
    
    return abs_video_path

def speech_to_text(video_file_path, selected_translation_lang, whisper_model):
    """
    # Youtube with translated subtitles using OpenAI Whisper and Opus-MT models.
    # Currently supports only English audio
    This space allows you to:
    1. Download youtube video with a given url
    2. Watch it in the first video component
    3. Run automatic speech recognition on the video using fast Whisper models
    4. Translate the recognized transcriptions to 26 languages supported by deepL (If source language not supported this will return original transciption)
    5. Burn the translations to the original video and watch the video in the 2nd video component
    
    Speech Recognition is based on models from OpenAI Whisper https://github.com/openai/whisper
    This space is using c++ implementation by https://github.com/ggerganov/whisper.cpp
    """
    
    if(video_file_path == None):
        raise ValueError("Error no video input")
    print(video_file_path)
    try:
        audio = whisper.load_audio(video_file_path)
    except Exception as e:
        raise RuntimeError("Error converting video to audio")

    last_time = time.time()

    try:
        print(f'Transcribing via local model')
        
        transcribe_options = dict(beam_size=5, best_of=5, without_timestamps=False)
        transcription = whisper_models_dict.get(whisper_model).transcribe(audio, **transcribe_options)
        
        df = pd.DataFrame(columns=['start','end','text'])

        

        for i,segment in enumerate(transcription['segments']):
            new_row = {'start': segment['start'],
            'end': segment['end'],
            'text': segment['text']
                            }
            df = df.append(new_row, ignore_index=True)
        
        return (df)
    except Exception as e:
        raise RuntimeError("Error Running inference with local model", e)



def translate_transcriptions(df, selected_translation_lang_2):
    if selected_translation_lang_2 is None:
            selected_translation_lang_2 = 'English'
    df.reset_index(inplace=True)
    
    print("start_translation")
    translations = []
    
    

    text_combined = ""
    for i, sentence in enumerate(df['text']):
        if i == 0:
            text_combined = sentence
        else:
            text_combined = text_combined + '\n' + sentence

    data = {'text': text_combined,
    'tag_spitting': 'xml',
    'target_lang': DeepL_language_codes_for_translation.get(selected_translation_lang_2)
           }
    try:
        response = requests.post('https://api-free.deepl.com/v2/translate', headers=headers, data=data)
    
        # Print the response from the server
        translated_sentences = json.loads(response.text)
        translated_sentences = translated_sentences['translations'][0]['text'].split('\n')
        df['translation'] = translated_sentences
    except Exception as e:
        print(e)
        df['translation'] = df['text']
        
    print("translations done")

    return df

def create_srt_and_burn(df, video_in):
    
    print("Starting creation of video wit srt")
    
       
    with open('testi.srt','w', encoding="utf-8") as file:
        for i in range(len(df)):
            file.write(str(i+1))
            file.write('\n')
            start = df.iloc[i]['start']
           
    
            milliseconds = round(start * 1000.0)

            hours = milliseconds // 3_600_000
            milliseconds -= hours * 3_600_000

            minutes = milliseconds // 60_000
            milliseconds -= minutes * 60_000

            seconds = milliseconds // 1_000
            milliseconds -= seconds * 1_000

            file.write(f"{hours}:{minutes:02d}:{seconds:02d}.{milliseconds:03d}")
            
            stop = df.iloc[i]['end']
            
            
            milliseconds = round(stop * 1000.0)

            hours = milliseconds // 3_600_000
            milliseconds -= hours * 3_600_000

            minutes = milliseconds // 60_000
            milliseconds -= minutes * 60_000

            seconds = milliseconds // 1_000
            milliseconds -= seconds * 1_000

            
            file.write(' --> ')
            file.write(f"{hours}:{minutes:02d}:{seconds:02d}.{milliseconds:03d}")
            file.write('\n')
            file.writelines(df.iloc[i]['translation'])
            if int(i) != len(df)-1:
                file.write('\n\n')
        
    print("SRT DONE")        
    try:
        file1 = open('./testi.srt', 'r', encoding="utf-8")
        Lines = file1.readlines()
        
        count = 0
        # Strips the newline character
        for line in Lines:
            count += 1
            print("{}".format(line))
                
        print(type(video_in))
        print(video_in)
        
        video_out = video_in.replace('.mp4', '_out.mp4')
        print(video_out)
        command = 'ffmpeg -i "{}" -y -vf subtitles=./testi.srt "{}"'.format(video_in, video_out)
        print(command)
        os.system(command)
        return video_out
    except Exception as e:
        print(e)
        return video_out


# ---- Gradio Layout -----
video_in = gr.Video(label="Video file", mirror_webcam=False)
youtube_url_in = gr.Textbox(label="Youtube url", lines=1, interactive=True)
video_out = gr.Video(label="Video Out", mirror_webcam=False)


df_init = pd.DataFrame(columns=['start','end','text','translation'])
selected_source_lang = gr.Dropdown(choices=source_language_list, type="value", value="Let the model analyze", label="Spoken language in video", interactive=True)
selected_translation_lang_2 = gr.Dropdown(choices=translation_models_list, type="value", value="English", label="In which language you want the transcriptions?", interactive=True)
selected_whisper_model = gr.Dropdown(choices=whisper_models, type="value", value="base", label="Selected Whisper model", interactive=True)

transcription_df = gr.DataFrame(value=df_init,label="Transcription dataframe", row_count=(0, "dynamic"), max_rows = 10, wrap=True, overflow_row_behaviour='paginate')
transcription_and_translation_df = gr.DataFrame(value=df_init,label="Transcription and translation dataframe", max_rows = 10, wrap=True, overflow_row_behaviour='paginate')

demo = gr.Blocks(css='''
#cut_btn, #reset_btn { align-self:stretch; }
#\\31 3 { max-width: 540px; }
.output-markdown {max-width: 65ch !important;}
''')
demo.encrypt = False
with demo:
    transcription_var = gr.Variable()
    
    with gr.Row():
        with gr.Column():
            gr.Markdown('''
            ### This space allows you to: 
            ##### 1. Download youtube video with a given URL
            ##### 2. Watch it in the first video component
            ##### 3. Run automatic speech recognition on the video using Whisper
            ##### 4. Translate the recognized transcriptions to 26 languages supported by deepL
            ##### 5. Burn the translations to the original video and watch the video in the 2nd video component
            ''')
            
        with gr.Column():
            gr.Markdown('''
            ### 1. Insert Youtube URL below. Some test videos below:
            ##### 1. https://www.youtube.com/watch?v=nlMuHtV82q8&ab_channel=NothingforSale24
            ##### 2. https://www.youtube.com/watch?v=JzPfMbG1vrE&ab_channel=ExplainerVideosByLauren
            ##### 3. https://www.youtube.com/watch?v=S68vvV0kod8&ab_channel=Pearl-CohnTelevision
            ''')
            
    with gr.Row():
        with gr.Column():
            youtube_url_in.render()
            download_youtube_btn = gr.Button("Step 1. Download Youtube video")
            download_youtube_btn.click(get_youtube, [youtube_url_in], [
                video_in])
            print(video_in)
            

    with gr.Row():
        with gr.Column():
            video_in.render()
            with gr.Column():
                gr.Markdown('''
                ##### Here you can start the transcription and translation process.
                ##### Be aware that processing will last some time. With base model it is around 3x speed 
                ''')
            selected_source_lang.render()
            selected_whisper_model.render()
            transcribe_btn = gr.Button("Step 2. Transcribe audio")
            transcribe_btn.click(speech_to_text, [video_in, selected_source_lang, selected_whisper_model], transcription_df)

            
    with gr.Row():
        gr.Markdown('''
        ##### Here you will get transcription  output
        ##### ''')

    with gr.Row():
        with gr.Column():
            transcription_df.render()
            
    with gr.Row():
        with gr.Column():
            gr.Markdown('''
            ##### Here you will get translated transcriptions. 
            ##### Please remember to select target language
            ##### ''')
            selected_translation_lang_2.render()
            translate_transcriptions_button = gr.Button("Step 3. Translate transcription")
            translate_transcriptions_button.click(translate_transcriptions, [transcription_df, selected_translation_lang_2], transcription_and_translation_df)
            transcription_and_translation_df.render()
            
    with gr.Row():
        with gr.Column():
            gr.Markdown('''
            ##### Now press the Step 4. Button to create output video with translated transcriptions
            ##### ''')
            translate_and_make_srt_btn = gr.Button("Step 4. Create and burn srt to video")
            print(video_in)
            translate_and_make_srt_btn.click(create_srt_and_burn, [transcription_and_translation_df,video_in], [
                video_out])
            video_out.render()

                
demo.launch()