RASMUS's picture
Create app.py
7ed286f
raw
history blame
10.8 kB
import gradio as gr
import os
from pathlib import Path
import time
import pandas as pd
import re
import time
import os
import whisper
from pytube import YouTube
import psutil
num_cores = psutil.cpu_count()
os.environ["OMP_NUM_THREADS"] = f"{num_cores}"
import torch
# is cuda available?
from easynmt import EasyNMT
translation_model = EasyNMT('m2m_100_418M', max_new_tokens=60)
asr_model = whisper.load_model("base")
transcribe_options = dict(beam_size=3, best_of=3, without_timestamps=False)
translation_models = {
"Afrikaans":"af",
"Amharic":"am",
"Arabic":"ar",
"Asturian ":"st",
"Azerbaijani":"az",
"Bashkir":"ba",
"Belarusian":"be",
"Bulgarian":"bg",
"Bengali":"bn",
"Breton":"br",
"Bosnian":"bs",
"Catalan; Valencian":"ca",
"Cebuano":"eb",
"Czech":"cs",
"Welsh":"cy",
"Danish":"da",
"German":"de",
"Greeek":"el",
"English":"en",
"Spanish":"es",
"Estonian":"et",
"Persian":"fa",
"Fulah":"ff",
"Finnish":"fi",
"French":"fr",
"Western Frisian":"fy",
"Irish":"ga",
"Gaelic; Scottish Gaelic":"gd",
"Galician":"gl",
"Gujarati":"gu",
"Hausa":"ha",
"Hebrew":"he",
"Hindi":"hi",
"Croatian":"hr",
"Haitian; Haitian Creole":"ht",
"Hungarian":"hu",
"Armenian":"hy",
"Indonesian":"id",
"Igbo":"ig",
"Iloko":"lo",
"Icelandic":"is",
"Italian":"it",
"Japanese":"ja",
"Javanese":"jv",
"Georgian":"ka",
"Kazakh":"kk",
"Central Khmer":"km",
"Kannada":"kn",
"Korean":"ko",
"Luxembourgish; Letzeburgesch":"lb",
"Ganda":"lg",
"Lingala":"ln",
"Lao":"lo",
"Lithuanian":"lt",
"Latvian":"lv",
"Malagasy":"mg",
"Macedonian":"mk",
"Malayalam":"ml",
"Mongolian":"mn",
"Marathi":"mr",
"Malay":"ms",
"Burmese":"my",
"Nepali":"ne",
"Dutch; Flemish":"nl",
"Norwegian":"no",
"Northern Sotho":"ns",
"Occitan (post 1500)":"oc",
"Oriya":"or",
"Panjabi; Punjabi":"pa",
"Polish":"pl",
"Pushto; Pashto":"ps",
"Portuguese":"pt",
"Romanian; Moldavian; Moldovan":"ro",
"Russian":"ru",
"Sindhi":"sd",
"Sinhala; Sinhalese":"si",
"Slovak":"sk",
"Slovenian":"sl",
"Somali":"so",
"Albanian":"sq",
"Serbian":"sr",
"Swati":"ss",
"Sundanese":"su",
"Swedish":"sv",
"Swahili":"sw",
"Tamil":"ta",
"Thai":"th",
"Tagalog":"tl",
"Tswana":"tn",
"Turkish":"tr",
"Ukrainian":"uk",
"Urdu":"ur",
"Uzbek":"uz",
"Vietnamese":"vi",
"Wolof":"wo",
"Xhosa":"xh",
"Yiddish":"yi",
"Yoruba":"yo",
"Chinese":"zh",
"Zulu":"zu"
}
translation_models_list = [key[0] for key in translation_models.items()]
device = "cpu"#torch.device("cuda" if torch.cuda.is_available() else "cpu")
print("DEVICE IS: ")
print(device)
videos_out_path = Path("./videos_out")
videos_out_path.mkdir(parents=True, exist_ok=True)
def get_youtube(video_url):
yt = YouTube(video_url)
abs_video_path = yt.streams.filter(progressive=True, file_extension='mp4').order_by('resolution').desc().first().download()
print("LADATATTU POLKUUN")
print(abs_video_path)
return abs_video_path
async def speech_to_text(video_file_path, selected_translation_lang):
"""
# Youtube with translated subtitles using OpenAI Whisper and Opus-MT models.
# Currently supports only English audio
This space allows you to:
1. Download youtube video with a given url
2. Watch it in the first video component
3. Run automatic speech recognition on the video using Whisper
4. Translate the recognized transcriptions to Finnish, Swedish, Danish
5. Burn the translations to the original video and watch the video in the 2nd video component
Speech Recognition is based on OpenAI Whisper https://github.com/openai/whisper
"""
if(video_file_path == None):
raise ValueError("Error no video input")
print(video_file_path)
try:
audio = whisper.load_audio(video_file_path)
except Exception as e:
raise RuntimeError("Error converting video to audio")
last_time = time.time()
try:
print(f'Transcribing via local model')
transcribe_options = dict(beam_size=5, best_of=5, without_timestamps=False)
transcription = asr_model.transcribe(audio, **transcribe_options)
#translation_options = dict(language=selected_translation_lang, beam_size=5, best_of=5, without_timestamps=False)
#translations = asr_model.transcribe(audio, **translation_options)
df = pd.DataFrame(columns=['start','end','text'])
for i,segment in enumerate(transcription['segments']):
new_row = {'start': segment['start'],
'end': segment['end'],
'text': segment['text']
}
df = df.append(new_row, ignore_index=True)
if selected_translation_lang is None:
selected_translation_lang = 'Finnish'
sentences = df['text']
df['translation'] = translation_model.translate(sentences, target_lang=translation_models.get(selected_translation_lang), max_new_tokens = 50)
print('After translation to target language \n')
return (df)
except Exception as e:
raise RuntimeError("Error Running inference with local model", e)
def create_srt_and_burn(df, video_in):
print("Starting creation of video wit srt")
with open('testi.srt','w', encoding="utf-8") as file:
for i in range(len(df)):
file.write(str(i+1))
file.write('\n')
start = df.iloc[i]['start']
milliseconds = round(start * 1000.0)
hours = milliseconds // 3_600_000
milliseconds -= hours * 3_600_000
minutes = milliseconds // 60_000
milliseconds -= minutes * 60_000
seconds = milliseconds // 1_000
milliseconds -= seconds * 1_000
file.write(f"{hours}:{minutes:02d}:{seconds:02d}.{milliseconds:03d}")
stop = df.iloc[i]['end']
milliseconds = round(stop * 1000.0)
hours = milliseconds // 3_600_000
milliseconds -= hours * 3_600_000
minutes = milliseconds // 60_000
milliseconds -= minutes * 60_000
seconds = milliseconds // 1_000
milliseconds -= seconds * 1_000
file.write(' --> ')
file.write(f"{hours}:{minutes:02d}:{seconds:02d}.{milliseconds:03d}")
file.write('\n')
file.writelines(df.iloc[i]['translation'])
if int(i) != len(df)-1:
file.write('\n\n')
print("SRT DONE")
try:
file1 = open('./testi.srt', 'r', encoding="utf-8")
Lines = file1.readlines()
count = 0
# Strips the newline character
for line in Lines:
count += 1
print("{}".format(line))
print(type(video_in))
print(video_in)
video_out = video_in.replace('.mp4', '_out.mp4')
print(video_out)
command = 'ffmpeg -i "{}" -y -vf subtitles=./testi.srt "{}"'.format(video_in, video_out)
print(command)
os.system(command)
return video_out
except Exception as e:
print(e)
return video_out
# ---- Gradio Layout -----
video_in = gr.Video(label="Video file", mirror_webcam=False)
youtube_url_in = gr.Textbox(label="Youtube url", lines=1, interactive=True)
video_out = gr.Video(label="Video Out", mirror_webcam=False)
df_init = pd.DataFrame(columns=['start','end','text','translation'])
selected_translation_lang = gr.Dropdown(choices=translation_models_list, type="value", value="English", label="Language to translate transcriptions to", interactive=True)
transcription_df = gr.DataFrame(value=df_init,label="Transcription dataframe", row_count=(0, "dynamic"), max_rows = 10)
demo = gr.Blocks(css='''
#cut_btn, #reset_btn { align-self:stretch; }
#\\31 3 { max-width: 540px; }
.output-markdown {max-width: 65ch !important;}
''')
demo.encrypt = False
with demo:
transcription_var = gr.Variable()
with gr.Row():
with gr.Column():
gr.Markdown('''
### This space allows you to:
##### 1. Download youtube video with a given URL
##### 2. Watch it in the first video component
##### 3. Run automatic speech recognition on the video using Whisper (Please remember to select translation language)
##### 4. Translate the recognized transcriptions to Finnish, Swedish, Danish
##### 5. Burn the translations to the original video and watch the video in the 2nd video component
''')
with gr.Column():
gr.Markdown('''
### 1. Insert Youtube URL below (Some examples below which I suggest to use for first tests)
##### 1. https://www.youtube.com/watch?v=nlMuHtV82q8&ab_channel=NothingforSale24
##### 2. https://www.youtube.com/watch?v=JzPfMbG1vrE&ab_channel=ExplainerVideosByLauren
##### 3. https://www.youtube.com/watch?v=S68vvV0kod8&ab_channel=Pearl-CohnTelevision
''')
with gr.Row():
with gr.Column():
youtube_url_in.render()
download_youtube_btn = gr.Button("Step 1. Download Youtube video")
download_youtube_btn.click(get_youtube, [youtube_url_in], [
video_in])
print(video_in)
with gr.Row():
with gr.Column():
video_in.render()
with gr.Column():
gr.Markdown('''
##### Here you can start the transcription and translation process.
##### Be aware that processing will last for a while (35 second video took around 20 seconds in my testing)
''')
transcribe_btn = gr.Button("Step 2. Transcribe and translate audio")
transcribe_btn.click(speech_to_text, [video_in, selected_translation_lang], transcription_df)
with gr.Row():
with gr.Column():
selected_translation_lang.render()
with gr.Row():
gr.Markdown('''
##### Here you will get transcription and translation output
##### If you see error please remember to select translation language
##### ''')
with gr.Row():
with gr.Column():
transcription_df.render()
with gr.Row():
with gr.Column():
translate_and_make_srt_btn = gr.Button("Step 3. Create and burn srt to video")
print(video_in)
translate_and_make_srt_btn.click(create_srt_and_burn, [transcription_df,video_in], [
video_out])
video_out.render()
if __name__ == "__main__":
demo.queue().launch(debug=True, share=False, enable_queue=True)