RJuro's picture
-
3026887
|
raw
history blame
1.94 kB
# rag-chroma
This template performs RAG using Chroma and OpenAI.
The vectorstore is created in `chain.py` and by default indexes a [popular blog posts on Agents](https://lilianweng.github.io/posts/2023-06-23-agent/) for question-answering.
## Environment Setup
Set the `OPENAI_API_KEY` environment variable to access the OpenAI models.
## Usage
To use this package, you should first have the LangChain CLI installed:
```shell
pip install -U langchain-cli
```
To create a new LangChain project and install this as the only package, you can do:
```shell
langchain app new my-app --package rag-chroma
```
If you want to add this to an existing project, you can just run:
```shell
langchain app add rag-chroma
```
And add the following code to your `server.py` file:
```python
from rag_chroma import chain as rag_chroma_chain
add_routes(app, rag_chroma_chain, path="/rag-chroma")
```
(Optional) Let's now configure LangSmith.
LangSmith will help us trace, monitor and debug LangChain applications.
LangSmith is currently in private beta, you can sign up [here](https://smith.langchain.com/).
If you don't have access, you can skip this section
```shell
export LANGCHAIN_TRACING_V2=true
export LANGCHAIN_API_KEY=<your-api-key>
export LANGCHAIN_PROJECT=<your-project> # if not specified, defaults to "default"
```
If you are inside this directory, then you can spin up a LangServe instance directly by:
```shell
langchain serve
```
This will start the FastAPI app with a server is running locally at
[http://localhost:8000](http://localhost:8000)
We can see all templates at [http://127.0.0.1:8000/docs](http://127.0.0.1:8000/docs)
We can access the playground at [http://127.0.0.1:8000/rag-chroma/playground](http://127.0.0.1:8000/rag-chroma/playground)
We can access the template from code with:
```python
from langserve.client import RemoteRunnable
runnable = RemoteRunnable("http://localhost:8000/rag-chroma")
```