Spaces:
Sleeping
Sleeping
File size: 17,466 Bytes
6b10c76 d52e613 6b10c76 d52e613 6b10c76 7c7b13f 6b10c76 634e23c b512d5e 34dd4cd 6b10c76 7c7b13f 3458a4b 6b10c76 91858b4 b512d5e 7c7b13f 6b10c76 7c7b13f 6b10c76 7c7b13f 6b10c76 7c7b13f 6b10c76 7c7b13f 6b10c76 91858b4 6b10c76 b512d5e 6b10c76 91858b4 6b10c76 b512d5e 6b10c76 b9f2d46 6b10c76 7c7b13f 6b10c76 7c7b13f 6b10c76 b9f2d46 6b10c76 7c7b13f 6b10c76 7c7b13f 6b10c76 7c7b13f 0a6da3b 7c7b13f 2a34cba 7c7b13f 6b10c76 0a6da3b 6b10c76 7c7b13f 6b10c76 7c7b13f 6b10c76 7c7b13f 6b10c76 7c7b13f 6b10c76 4710ea4 6b10c76 e2f8d20 7c7b13f 6b10c76 3db4344 6b10c76 b512d5e d52e613 6b10c76 d52e613 6b10c76 d52e613 6b10c76 d52e613 6b10c76 7c7b13f c8359ac 75e8455 7c7b13f 75e8455 7c7b13f c8359ac 7c7b13f 34dd4cd 7c7b13f 91858b4 48c261a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 |
import time
import fitz
import numpy as np
import pickle
import os
import dill
import logging
import asyncio
import networkx as nx
from mistralai import Mistral
from annoy import AnnoyIndex
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
from rank_bm25 import BM25Okapi
from gensim.models import Word2Vec
from typing import List, Optional, Tuple
import gradio as gr
import moviepy.editor as mp
logger = logging.getLogger(__name__)
logging.basicConfig(level=logging.INFO)
api_key = os.getenv("MISTRAL_API_KEY")
client = Mistral(api_key=api_key)
from deepgram import Deepgram
dg_api_key = os.getenv("DEEPGRAM_API_KEY")
deepgram = Deepgram(dg_api_key)
def get_text_embedding_with_rate_limit(text_list, initial_delay=2, max_retries=10, max_delay=60):
embeddings = []
for text in text_list:
retries = 0
delay = initial_delay
while retries < max_retries:
try:
token_count = len(text.split())
if token_count > 16384:
logger.warning("Text chunk exceeds the token limit. Truncating the text.")
text = " ".join(text.split()[:16384])
response = client.embeddings.create(model="mistral-embed", inputs=[text])
embeddings.extend([embedding.embedding for embedding in response.data])
time.sleep(delay)
break
except Exception as e:
retries += 1
logger.warning(f"Rate limit exceeded, retrying in {delay} seconds... (Attempt {retries}/{max_retries})")
time.sleep(delay)
delay = min(delay * 2, max_delay)
if retries == max_retries:
logger.error("Max retries reached. Skipping this chunk.")
break
return embeddings
def store_embeddings_in_vector_db(
file_path: str,
vector_db_path: str,
annoy_index_path: str,
chunk_size: int = 2048,
overlap: int = 200,
num_trees: int = 10
):
all_texts = []
if file_path.endswith(('.pdf', '.doc', '.docx' , '.pptx' , '.ppt' , '.xls', '.xlsx' , '.txt' )):
doc = fitz.open(file_path)
all_embeddings = []
total_pages = doc.page_count
logging.info(f"Processing PDF/DOC: {file_path} with {total_pages} pages.")
for page_num in range(total_pages):
page = doc.load_page(page_num)
text = page.get_text()
if text.strip():
chunks = split_text_into_chunks(text, chunk_size, overlap)
embeddings = get_text_embedding_with_rate_limit(chunks)
all_embeddings.extend(embeddings)
all_texts.extend(chunks)
logging.info(f"Processed page {page_num + 1}/{total_pages}, extracted {len(chunks)} chunks.")
else:
logging.warning(f"No text found on page {page_num + 1}.")
elif file_path.endswith(('.mp3', '.wav', '.m4a')):
logging.info(f"Processing audio file: {file_path}")
with open(file_path, 'rb') as audio_file:
audio_content = audio_file.read()
response = asyncio.run(deepgram.transcription.prerecorded({'buffer': audio_content, 'mimetype': 'audio/wav'}, {'punctuate': True}))
text = response['results']['channels'][0]['alternatives'][0]['transcript']
chunks = split_text_into_chunks(text, chunk_size, overlap)
all_embeddings = get_text_embedding_with_rate_limit(chunks)
all_texts.extend(chunks)
elif file_path.endswith(('.mp4', '.avi', '.mov')):
logging.info(f"Processing video file: {file_path}")
video = mp.VideoFileClip(file_path)
audio_path = "temp_audio.wav"
video.audio.write_audiofile(audio_path)
with open(audio_path, 'rb') as audio_file:
audio_content = audio_file.read()
response = asyncio.run(deepgram.transcription.prerecorded({'buffer': audio_content, 'mimetype': 'audio/wav'}, {'punctuate': True}))
text = response['results']['channels'][0]['alternatives'][0]['transcript']
os.remove(audio_path)
chunks = split_text_into_chunks(text, chunk_size, overlap)
all_embeddings = get_text_embedding_with_rate_limit(chunks)
all_texts.extend(chunks)
else:
raise ValueError("Unsupported file format. Please upload a PDF, DOC, DOCX, MP3, WAV, M4A, MP4, AVI, or MOV file.")
embeddings_np = np.array(all_embeddings).astype('float32')
with open(vector_db_path, "wb") as f:
dill.dump({'embeddings': embeddings_np, 'texts': all_texts}, f)
logging.info(f"Stored embeddings and texts to {vector_db_path}.")
if os.path.exists(annoy_index_path):
os.remove(annoy_index_path)
logging.info(f"Existing Annoy index at {annoy_index_path} removed.")
embedding_dim = embeddings_np.shape[1]
annoy_index = AnnoyIndex(embedding_dim, 'angular')
for i, embedding in enumerate(embeddings_np):
annoy_index.add_item(i, embedding)
annoy_index.build(num_trees)
annoy_index.save(annoy_index_path)
logging.info(f"Annoy index built with {len(all_embeddings)} items and saved to {annoy_index_path}.")
def split_text_into_chunks(text: str, chunk_size: int = 2048, overlap: int = 200) -> List[str]:
tokens = text.split()
chunks = []
start = 0
while start < len(tokens):
end = start + chunk_size
chunk = " ".join(tokens[start:end])
chunks.append(chunk)
start += chunk_size - overlap
return chunks
class MistralRAGChatbot:
def __init__(self, vector_db_path: str, annoy_index_path: str):
self.embeddings, self.texts = self.load_vector_db(vector_db_path)
self.annoy_index = self.load_annoy_index(annoy_index_path, self.embeddings.shape[1])
self.bm25 = BM25Okapi([text.split() for text in self.texts])
self.word2vec_model = self.train_word2vec(self.texts)
self.reranking_methods = {
'advanced_fusion': self.advanced_fusion_retrieval
}
logging.info("MistralRAGChatbot initialized successfully.")
def load_vector_db(self, vector_db_path: str) -> Tuple[np.ndarray, List[str]]:
with open(vector_db_path, "rb") as f:
data = dill.load(f)
embeddings = np.array(data['embeddings'], dtype='float32')
texts = data['texts']
logging.info(f"Loaded vector database from {vector_db_path} with {len(texts)} entries.")
return embeddings, texts
def load_annoy_index(self, annoy_index_path: str, embedding_dim: int) -> AnnoyIndex:
if not os.path.exists(annoy_index_path):
raise FileNotFoundError(f"Annoy index file {annoy_index_path} not found.")
annoy_index = AnnoyIndex(embedding_dim, 'angular')
annoy_index.load(annoy_index_path)
logging.info(f"Loaded Annoy index from {annoy_index_path}.")
return annoy_index
def train_word2vec(self, texts: List[str]) -> Word2Vec:
tokenized_texts = [text.split() for text in texts]
model = Word2Vec(sentences=tokenized_texts, vector_size=100, window=5, min_count=1, workers=4)
logging.info("Word2Vec model trained.")
return model
async def get_text_embedding(self, text: str, model: str = "mistral-embed") -> np.ndarray:
try:
response = await client.embeddings.create_async(model=model, inputs=[text])
return np.array(response.data[0].embedding)
except Exception as e:
logging.error(f"Error fetching embedding: {e}")
return np.zeros((1024,))
def advanced_fusion_retrieval(self, user_query: str, docs: List[dict]) -> List[dict]:
query_embedding = self.create_embeddings([user_query])[0]
vector_scores = {doc['index']: doc['score'] for doc in docs if doc['method'] == 'annoy'}
bm25_scores = {doc['index']: doc['score'] for doc in docs if doc['method'] == 'bm25'}
sim_graph = nx.Graph()
sim_matrix = cosine_similarity(self.embeddings)
for i in range(len(self.embeddings)):
for j in range(i + 1, len(self.embeddings)):
if sim_matrix[i, j] > 0.5:
sim_graph.add_edge(i, j, weight=sim_matrix[i, j])
pagerank_scores = np.array(list(nx.pagerank(sim_graph, weight='weight').values()))
combined_scores = {}
for doc in docs:
idx = doc['index']
combined_scores[idx] = (
0.5 * vector_scores.get(idx, 0) +
0.3 * bm25_scores.get(idx, 0) +
0.2 * pagerank_scores[idx] if idx < len(pagerank_scores) else 0
)
min_score = min(combined_scores.values())
max_score = max(combined_scores.values())
if min_score == max_score:
normalized_scores = {idx: 0.5 for idx in combined_scores}
else:
normalized_scores = {idx: (score - min_score) / (max_score - min_score) for idx, score in combined_scores.items()}
sorted_indices = sorted(combined_scores, key=combined_scores.get, reverse=True)
return [{'text': self.texts[i], 'method': 'advanced_fusion', 'score': normalized_scores[i], 'index': i} for i in sorted_indices[:5]]
def create_embeddings(self, text_list: List[str]) -> np.ndarray:
expected_dim = 1024
embeddings = []
for text in text_list:
word_vectors = [self.word2vec_model.wv[token] for token in text.split() if token in self.word2vec_model.wv]
avg_embedding = np.mean(word_vectors, axis=0, dtype=np.float32) if word_vectors else np.zeros(self.word2vec_model.vector_size, dtype=np.float32)
if avg_embedding.shape[0] < expected_dim:
avg_embedding = np.pad(avg_embedding, (0, expected_dim - avg_embedding.shape[0]), 'constant')
elif avg_embedding.shape[0] > expected_dim:
avg_embedding = avg_embedding[:expected_dim]
embeddings.append(avg_embedding)
return np.array(embeddings, dtype=np.float32)
async def generate_response_with_rag(
self,
user_query: str,
model: str = "mistral-small-latest",
top_k: int = 10,
response_style: str = "Detailed",
selected_retrieval_methods: Optional[List[str]] = None,
selected_reranking_methods: Optional[List[str]] = None
) -> Tuple[str, List[str], List[dict]]:
if not selected_retrieval_methods:
selected_retrieval_methods = ['annoy', 'bm25']
if not selected_reranking_methods:
selected_reranking_methods = ['advanced_fusion']
query_embedding = await self.get_text_embedding(user_query)
retrieved_docs = self.retrieve_documents(user_query, query_embedding, top_k, selected_retrieval_methods)
reranked_docs = self.rerank_documents(user_query, retrieved_docs, selected_reranking_methods)
context = "\n\n".join([doc['text'] for doc in reranked_docs[:5]])
prompt = self.build_prompt(context, user_query, response_style)
try:
async_response = await client.chat.stream_async(model=model, messages=[{"role": "user", "content": prompt}])
response = ""
async for chunk in async_response:
response += chunk.data.choices[0].delta.content
logging.info("Response generated successfully.")
except Exception as e:
logging.error(f"Error generating response: {e}")
response = "An error occurred while generating the response."
return response, [doc['text'] for doc in reranked_docs[:5]], reranked_docs[:5]
def retrieve_documents(
self,
user_query: str,
query_embedding: np.ndarray,
top_k: int,
selected_methods: List[str]
) -> List[dict]:
all_docs = []
for method in selected_methods:
indices, scores = getattr(self, f"retrieve_with_{method}")(user_query, query_embedding, top_k)
for idx, score in zip(indices, scores):
all_docs.append({
'text': self.texts[idx],
'method': method,
'score': score,
'index': idx
})
return all_docs
def retrieve_with_annoy(self, user_query: str, query_embedding: np.ndarray, top_k: int) -> Tuple[List[int], List[float]]:
n_results = min(top_k, len(self.texts))
indices, distances = self.annoy_index.get_nns_by_vector(query_embedding, n_results, include_distances=True)
scores = [1.0 - (dist / max(distances)) for dist in distances] if distances else []
logging.debug(f"Annoy retrieval returned {len(indices)} documents.")
return indices, scores
def retrieve_with_bm25(self, user_query: str, query_embedding: np.ndarray, top_k: int) -> Tuple[List[int], List[float]]:
tokenized_query = user_query.split()
scores = self.bm25.get_scores(tokenized_query)
indices = np.argsort(-scores)[:top_k]
logging.debug(f"BM25 retrieval returned {len(indices)} documents.")
return indices, scores[indices].tolist()
def rerank_documents(
self,
user_query: str,
retrieved_docs: List[dict],
selected_methods: List[str]
) -> List[dict]:
reranked_docs = retrieved_docs
for method in selected_methods:
if method == 'advanced_fusion':
reranked_docs = self.advanced_fusion_retrieval(user_query, reranked_docs)
else:
reranked_docs = self.reranking_methods[method](user_query, reranked_docs)
return reranked_docs
def build_prompt(self, context: str, user_query: str, response_style: str) -> str:
styles = {
"detailed": "Provide a comprehensive and detailed answer based on the provided context.",
"concise": "Provide a brief and concise answer based on the provided context.",
"creative": "Provide a creative and engaging answer based on the provided context.",
"technical": "Provide a technical and in-depth answer based on the provided context."
}
style_instruction = styles.get(response_style.lower(), styles["detailed"])
if not context or not self.is_context_relevant(context, user_query):
prompt = f"""You are an intelligent assistant.
User Question:
{user_query}
Instruction:
The document database does not contain relevant information to answer the question. Please inform the user that no relevant documents were found and refrain from generating an imaginative or unrelated response."""
else:
prompt = f"""You are an intelligent assistant.
Context:
{context}
User Question:
{user_query}
Instruction:
{style_instruction}"""
logging.debug("Prompt constructed for response generation.")
return prompt
def is_context_relevant(self, context: str, user_query: str) -> bool:
context_lower = context.lower()
user_query_lower = user_query.lower()
query_terms = set(user_query_lower.split())
context_terms = set(context_lower.split())
common_terms = query_terms.intersection(context_terms)
return len(common_terms) > len(query_terms) * 0.2
def create_vector_db_and_annoy_index(pdf_path, vector_db_path, annoy_index_path):
store_embeddings_in_vector_db(pdf_path, vector_db_path, annoy_index_path)
print("Vector database and Annoy index creation completed.")
def chatbot_interface(file, user_query, response_style):
vector_db_path = "vector_db.pkl"
annoy_index_path = "vector_index.ann"
chunk_size = 2048
overlap = 200
store_embeddings_in_vector_db(file.name, vector_db_path, annoy_index_path, chunk_size, overlap)
chatbot = MistralRAGChatbot(vector_db_path, annoy_index_path)
selected_retrieval_methods_list = ['annoy', 'bm25']
selected_reranking_methods_list = ["advanced_fusion"]
response, retrieved_docs, source_info = asyncio.run(chatbot.generate_response_with_rag(
user_query=user_query,
response_style=response_style,
selected_retrieval_methods=selected_retrieval_methods_list,
selected_reranking_methods=selected_reranking_methods_list
))
formatted_response = f"# **ChanceRAG Response:**\n\n{response}\n\n"
formatted_response += "Retrieved and Reranked Documents:\n"
for idx, doc_info in enumerate(source_info, start=1):
formatted_response += f"\nDocument {idx}:\n"
formatted_response += f"Content Preview: {doc_info['text'][:200]}...\n"
formatted_response += f"Retrieval Method: {doc_info['method']}\n"
if 'score' in doc_info:
formatted_response += f"Precision Score: {doc_info['score']:.4f}\n"
return formatted_response
iface = gr.Blocks(theme="Rabbitt-AI/ChanceRAG")
with iface:
gr.Image("images/chanceRAG_logo.jpg", label="Image", show_label=False)
gr.Interface(
fn=chatbot_interface,
theme="Rabbitt-AI/ChanceRAG",
inputs=[
gr.File(label="Upload a File"),
gr.Textbox(lines=5, label="User Query"),
gr.Dropdown([
"Detailed", "Concise", "Creative", "Technical"], label="Response Style"
),
],
outputs= gr.Markdown(value="# **ChanceRAG Response**"),
)
iface.launch(share=True) |