File size: 17,466 Bytes
6b10c76
d52e613
6b10c76
 
 
 
 
 
d52e613
6b10c76
 
7c7b13f
 
6b10c76
 
 
634e23c
b512d5e
34dd4cd
6b10c76
7c7b13f
 
3458a4b
6b10c76
91858b4
b512d5e
 
 
 
 
7c7b13f
6b10c76
 
 
 
 
 
 
 
7c7b13f
6b10c76
 
 
 
 
 
 
7c7b13f
6b10c76
7c7b13f
6b10c76
7c7b13f
6b10c76
 
91858b4
6b10c76
b512d5e
6b10c76
 
 
 
 
91858b4
6b10c76
b512d5e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6b10c76
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b9f2d46
6b10c76
 
7c7b13f
6b10c76
 
 
 
 
 
 
 
 
 
 
7c7b13f
 
6b10c76
 
 
 
 
b9f2d46
 
 
 
 
6b10c76
 
 
 
 
 
 
7c7b13f
6b10c76
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c7b13f
6b10c76
7c7b13f
0a6da3b
 
7c7b13f
2a34cba
 
 
 
7c7b13f
6b10c76
 
0a6da3b
6b10c76
 
7c7b13f
6b10c76
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c7b13f
6b10c76
7c7b13f
6b10c76
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c7b13f
6b10c76
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4710ea4
6b10c76
 
e2f8d20
 
7c7b13f
6b10c76
 
 
3db4344
 
6b10c76
 
 
 
 
 
 
 
b512d5e
d52e613
6b10c76
d52e613
6b10c76
d52e613
6b10c76
d52e613
6b10c76
7c7b13f
c8359ac
75e8455
7c7b13f
75e8455
7c7b13f
c8359ac
7c7b13f
 
 
 
 
 
 
34dd4cd
7c7b13f
91858b4
48c261a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
import time
import fitz
import numpy as np
import pickle
import os
import dill
import logging
import asyncio
import networkx as nx
from mistralai import Mistral
from annoy import AnnoyIndex
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
from rank_bm25 import BM25Okapi
from gensim.models import Word2Vec
from typing import List, Optional, Tuple
import gradio as gr
import moviepy.editor as mp

logger = logging.getLogger(__name__)
logging.basicConfig(level=logging.INFO)

api_key = os.getenv("MISTRAL_API_KEY")
client = Mistral(api_key=api_key)

from deepgram import Deepgram

dg_api_key = os.getenv("DEEPGRAM_API_KEY")
deepgram = Deepgram(dg_api_key)

def get_text_embedding_with_rate_limit(text_list, initial_delay=2, max_retries=10, max_delay=60):
    embeddings = []
    for text in text_list:
        retries = 0
        delay = initial_delay
        while retries < max_retries:
            try:
                token_count = len(text.split())
                if token_count > 16384:
                    logger.warning("Text chunk exceeds the token limit. Truncating the text.")
                    text = " ".join(text.split()[:16384])
                response = client.embeddings.create(model="mistral-embed", inputs=[text])
                embeddings.extend([embedding.embedding for embedding in response.data])
                time.sleep(delay)
                break
            except Exception as e:
                retries += 1
                logger.warning(f"Rate limit exceeded, retrying in {delay} seconds... (Attempt {retries}/{max_retries})")
                time.sleep(delay)
                delay = min(delay * 2, max_delay)
                if retries == max_retries:
                    logger.error("Max retries reached. Skipping this chunk.")
                    break
    return embeddings

def store_embeddings_in_vector_db(
    file_path: str,
    vector_db_path: str,
    annoy_index_path: str,
    chunk_size: int = 2048,
    overlap: int = 200,
    num_trees: int = 10
):
    all_texts = []
    if file_path.endswith(('.pdf', '.doc', '.docx' , '.pptx' , '.ppt' , '.xls', '.xlsx' , '.txt' )):
        doc = fitz.open(file_path)
        all_embeddings = []
        total_pages = doc.page_count
        logging.info(f"Processing PDF/DOC: {file_path} with {total_pages} pages.")

        for page_num in range(total_pages):
            page = doc.load_page(page_num)
            text = page.get_text()
            if text.strip():
                chunks = split_text_into_chunks(text, chunk_size, overlap)
                embeddings = get_text_embedding_with_rate_limit(chunks)
                all_embeddings.extend(embeddings)
                all_texts.extend(chunks)
                logging.info(f"Processed page {page_num + 1}/{total_pages}, extracted {len(chunks)} chunks.")
            else:
                logging.warning(f"No text found on page {page_num + 1}.")
    elif file_path.endswith(('.mp3', '.wav', '.m4a')):
        logging.info(f"Processing audio file: {file_path}")
        with open(file_path, 'rb') as audio_file:
            audio_content = audio_file.read()
            response = asyncio.run(deepgram.transcription.prerecorded({'buffer': audio_content, 'mimetype': 'audio/wav'}, {'punctuate': True}))
        text = response['results']['channels'][0]['alternatives'][0]['transcript']
        chunks = split_text_into_chunks(text, chunk_size, overlap)
        all_embeddings = get_text_embedding_with_rate_limit(chunks)
        all_texts.extend(chunks)
    elif file_path.endswith(('.mp4', '.avi', '.mov')):
        logging.info(f"Processing video file: {file_path}")
        video = mp.VideoFileClip(file_path)
        audio_path = "temp_audio.wav"
        video.audio.write_audiofile(audio_path)
        with open(audio_path, 'rb') as audio_file:
            audio_content = audio_file.read()
            response = asyncio.run(deepgram.transcription.prerecorded({'buffer': audio_content, 'mimetype': 'audio/wav'}, {'punctuate': True}))
        text = response['results']['channels'][0]['alternatives'][0]['transcript']
        os.remove(audio_path)
        chunks = split_text_into_chunks(text, chunk_size, overlap)
        all_embeddings = get_text_embedding_with_rate_limit(chunks)
        all_texts.extend(chunks)
    else:
        raise ValueError("Unsupported file format. Please upload a PDF, DOC, DOCX, MP3, WAV, M4A, MP4, AVI, or MOV file.")

    embeddings_np = np.array(all_embeddings).astype('float32')
    with open(vector_db_path, "wb") as f:
        dill.dump({'embeddings': embeddings_np, 'texts': all_texts}, f)
    logging.info(f"Stored embeddings and texts to {vector_db_path}.")

    if os.path.exists(annoy_index_path):
        os.remove(annoy_index_path)
        logging.info(f"Existing Annoy index at {annoy_index_path} removed.")

    embedding_dim = embeddings_np.shape[1]
    annoy_index = AnnoyIndex(embedding_dim, 'angular')
    for i, embedding in enumerate(embeddings_np):
        annoy_index.add_item(i, embedding)
    annoy_index.build(num_trees)
    annoy_index.save(annoy_index_path)
    logging.info(f"Annoy index built with {len(all_embeddings)} items and saved to {annoy_index_path}.")

def split_text_into_chunks(text: str, chunk_size: int = 2048, overlap: int = 200) -> List[str]:
    tokens = text.split()
    chunks = []
    start = 0
    while start < len(tokens):
        end = start + chunk_size
        chunk = " ".join(tokens[start:end])
        chunks.append(chunk)
        start += chunk_size - overlap
    return chunks

class MistralRAGChatbot:
    def __init__(self, vector_db_path: str, annoy_index_path: str):
        self.embeddings, self.texts = self.load_vector_db(vector_db_path)
        self.annoy_index = self.load_annoy_index(annoy_index_path, self.embeddings.shape[1])
        self.bm25 = BM25Okapi([text.split() for text in self.texts])
        self.word2vec_model = self.train_word2vec(self.texts)
        self.reranking_methods = {
            'advanced_fusion': self.advanced_fusion_retrieval
        }
        logging.info("MistralRAGChatbot initialized successfully.")

    def load_vector_db(self, vector_db_path: str) -> Tuple[np.ndarray, List[str]]:
        with open(vector_db_path, "rb") as f:
            data = dill.load(f)
        embeddings = np.array(data['embeddings'], dtype='float32')
        texts = data['texts']
        logging.info(f"Loaded vector database from {vector_db_path} with {len(texts)} entries.")
        return embeddings, texts

    def load_annoy_index(self, annoy_index_path: str, embedding_dim: int) -> AnnoyIndex:
        if not os.path.exists(annoy_index_path):
            raise FileNotFoundError(f"Annoy index file {annoy_index_path} not found.")
        annoy_index = AnnoyIndex(embedding_dim, 'angular')
        annoy_index.load(annoy_index_path)
        logging.info(f"Loaded Annoy index from {annoy_index_path}.")
        return annoy_index

    def train_word2vec(self, texts: List[str]) -> Word2Vec:
        tokenized_texts = [text.split() for text in texts]
        model = Word2Vec(sentences=tokenized_texts, vector_size=100, window=5, min_count=1, workers=4)
        logging.info("Word2Vec model trained.")
        return model

    async def get_text_embedding(self, text: str, model: str = "mistral-embed") -> np.ndarray:
        try:
            response = await client.embeddings.create_async(model=model, inputs=[text])
            return np.array(response.data[0].embedding)
        except Exception as e:
            logging.error(f"Error fetching embedding: {e}")
            return np.zeros((1024,))

    def advanced_fusion_retrieval(self, user_query: str, docs: List[dict]) -> List[dict]:
        query_embedding = self.create_embeddings([user_query])[0]

        vector_scores = {doc['index']: doc['score'] for doc in docs if doc['method'] == 'annoy'}
        bm25_scores = {doc['index']: doc['score'] for doc in docs if doc['method'] == 'bm25'}

        sim_graph = nx.Graph()
        sim_matrix = cosine_similarity(self.embeddings)
        for i in range(len(self.embeddings)):
            for j in range(i + 1, len(self.embeddings)):
                if sim_matrix[i, j] > 0.5:
                    sim_graph.add_edge(i, j, weight=sim_matrix[i, j])

        pagerank_scores = np.array(list(nx.pagerank(sim_graph, weight='weight').values()))

        combined_scores = {}
        for doc in docs:
            idx = doc['index']
            combined_scores[idx] = (
                0.5 * vector_scores.get(idx, 0) +
                0.3 * bm25_scores.get(idx, 0) +
                0.2 * pagerank_scores[idx] if idx < len(pagerank_scores) else 0
            )

        min_score = min(combined_scores.values())
        max_score = max(combined_scores.values())

        if min_score == max_score:
            normalized_scores = {idx: 0.5 for idx in combined_scores}
        else:
            normalized_scores = {idx: (score - min_score) / (max_score - min_score) for idx, score in combined_scores.items()}

        sorted_indices = sorted(combined_scores, key=combined_scores.get, reverse=True)

        return [{'text': self.texts[i], 'method': 'advanced_fusion', 'score': normalized_scores[i], 'index': i} for i in sorted_indices[:5]]

    def create_embeddings(self, text_list: List[str]) -> np.ndarray:
        expected_dim = 1024
        embeddings = []
        for text in text_list:
            word_vectors = [self.word2vec_model.wv[token] for token in text.split() if token in self.word2vec_model.wv]
            avg_embedding = np.mean(word_vectors, axis=0, dtype=np.float32) if word_vectors else np.zeros(self.word2vec_model.vector_size, dtype=np.float32)
            if avg_embedding.shape[0] < expected_dim:
                avg_embedding = np.pad(avg_embedding, (0, expected_dim - avg_embedding.shape[0]), 'constant')
            elif avg_embedding.shape[0] > expected_dim:
                avg_embedding = avg_embedding[:expected_dim]
            embeddings.append(avg_embedding)
        return np.array(embeddings, dtype=np.float32)

    async def generate_response_with_rag(
        self,
        user_query: str,
        model: str = "mistral-small-latest",
        top_k: int = 10,
        response_style: str = "Detailed",
        selected_retrieval_methods: Optional[List[str]] = None,
        selected_reranking_methods: Optional[List[str]] = None
    ) -> Tuple[str, List[str], List[dict]]:
        if not selected_retrieval_methods:
            selected_retrieval_methods = ['annoy', 'bm25']
        if not selected_reranking_methods:
            selected_reranking_methods = ['advanced_fusion']
        query_embedding = await self.get_text_embedding(user_query)
        retrieved_docs = self.retrieve_documents(user_query, query_embedding, top_k, selected_retrieval_methods)
        reranked_docs = self.rerank_documents(user_query, retrieved_docs, selected_reranking_methods)
        context = "\n\n".join([doc['text'] for doc in reranked_docs[:5]])
        prompt = self.build_prompt(context, user_query, response_style)
        try:
            async_response = await client.chat.stream_async(model=model, messages=[{"role": "user", "content": prompt}])
            response = ""
            async for chunk in async_response:
                response += chunk.data.choices[0].delta.content
            logging.info("Response generated successfully.")
        except Exception as e:
            logging.error(f"Error generating response: {e}")
            response = "An error occurred while generating the response."
        return response, [doc['text'] for doc in reranked_docs[:5]], reranked_docs[:5]

    def retrieve_documents(
        self,
        user_query: str,
        query_embedding: np.ndarray,
        top_k: int,
        selected_methods: List[str]
    ) -> List[dict]:
        all_docs = []
        for method in selected_methods:
            indices, scores = getattr(self, f"retrieve_with_{method}")(user_query, query_embedding, top_k)
            for idx, score in zip(indices, scores):
                all_docs.append({
                    'text': self.texts[idx],
                    'method': method,
                    'score': score,
                    'index': idx
                })
        return all_docs

    def retrieve_with_annoy(self, user_query: str, query_embedding: np.ndarray, top_k: int) -> Tuple[List[int], List[float]]:
        n_results = min(top_k, len(self.texts))
        indices, distances = self.annoy_index.get_nns_by_vector(query_embedding, n_results, include_distances=True)
        scores = [1.0 - (dist / max(distances)) for dist in distances] if distances else []
        logging.debug(f"Annoy retrieval returned {len(indices)} documents.")
        return indices, scores

    def retrieve_with_bm25(self, user_query: str, query_embedding: np.ndarray, top_k: int) -> Tuple[List[int], List[float]]:
        tokenized_query = user_query.split()
        scores = self.bm25.get_scores(tokenized_query)
        indices = np.argsort(-scores)[:top_k]
        logging.debug(f"BM25 retrieval returned {len(indices)} documents.")
        return indices, scores[indices].tolist()

    def rerank_documents(
        self,
        user_query: str,
        retrieved_docs: List[dict],
        selected_methods: List[str]
    ) -> List[dict]:
        reranked_docs = retrieved_docs
        for method in selected_methods:
            if method == 'advanced_fusion':
                reranked_docs = self.advanced_fusion_retrieval(user_query, reranked_docs)
            else:
                reranked_docs = self.reranking_methods[method](user_query, reranked_docs)

        return reranked_docs

    def build_prompt(self, context: str, user_query: str, response_style: str) -> str:
        styles = {
            "detailed": "Provide a comprehensive and detailed answer based on the provided context.",
            "concise": "Provide a brief and concise answer based on the provided context.",
            "creative": "Provide a creative and engaging answer based on the provided context.",
            "technical": "Provide a technical and in-depth answer based on the provided context."
        }

        style_instruction = styles.get(response_style.lower(), styles["detailed"])

        if not context or not self.is_context_relevant(context, user_query):
            prompt = f"""You are an intelligent assistant.
    User Question:
    {user_query}
    Instruction:
    The document database does not contain relevant information to answer the question. Please inform the user that no relevant documents were found and refrain from generating an imaginative or unrelated response."""
        else:
            prompt = f"""You are an intelligent assistant.
    Context:
    {context}
    User Question:
    {user_query}
    Instruction:
    {style_instruction}"""

        logging.debug("Prompt constructed for response generation.")
        return prompt

    def is_context_relevant(self, context: str, user_query: str) -> bool:
        context_lower = context.lower()
        user_query_lower = user_query.lower()
        query_terms = set(user_query_lower.split())
        context_terms = set(context_lower.split())
        common_terms = query_terms.intersection(context_terms)
        return len(common_terms) > len(query_terms) * 0.2

def create_vector_db_and_annoy_index(pdf_path, vector_db_path, annoy_index_path):
    store_embeddings_in_vector_db(pdf_path, vector_db_path, annoy_index_path)
    print("Vector database and Annoy index creation completed.")

def chatbot_interface(file, user_query, response_style):
    vector_db_path = "vector_db.pkl"
    annoy_index_path = "vector_index.ann"
    chunk_size = 2048
    overlap = 200
    store_embeddings_in_vector_db(file.name, vector_db_path, annoy_index_path, chunk_size, overlap)

    chatbot = MistralRAGChatbot(vector_db_path, annoy_index_path)

    selected_retrieval_methods_list = ['annoy', 'bm25']
    selected_reranking_methods_list = ["advanced_fusion"]

    response, retrieved_docs, source_info = asyncio.run(chatbot.generate_response_with_rag(
        user_query=user_query,
        response_style=response_style,
        selected_retrieval_methods=selected_retrieval_methods_list,
        selected_reranking_methods=selected_reranking_methods_list
    ))

    formatted_response = f"# **ChanceRAG Response:**\n\n{response}\n\n"
    formatted_response += "Retrieved and Reranked Documents:\n"
    for idx, doc_info in enumerate(source_info, start=1):
        formatted_response += f"\nDocument {idx}:\n"
        formatted_response += f"Content Preview: {doc_info['text'][:200]}...\n"
        formatted_response += f"Retrieval Method: {doc_info['method']}\n"
        if 'score' in doc_info:
            formatted_response += f"Precision Score: {doc_info['score']:.4f}\n"
    return formatted_response

iface = gr.Blocks(theme="Rabbitt-AI/ChanceRAG")
with iface:
    gr.Image("images/chanceRAG_logo.jpg", label="Image", show_label=False)
    gr.Interface(
        fn=chatbot_interface,
        theme="Rabbitt-AI/ChanceRAG",
        inputs=[
            gr.File(label="Upload a File"),
            gr.Textbox(lines=5, label="User Query"),
            gr.Dropdown([
                "Detailed", "Concise", "Creative", "Technical"], label="Response Style"
            ),
        ],
        outputs= gr.Markdown(value="# **ChanceRAG Response**"),
    )

iface.launch(share=True)