Rain Poo
docs: LICENSE (#3)
86e7a38 unverified
|
raw
history blame
4.69 kB
metadata
title: Automated Interview Filtering
emoji: πŸ‰
colorFrom: red
colorTo: purple
sdk: gradio
sdk_version: 5.6.0
app_file: src/app.py
pinned: true

Sync to Hugging Face hub

Automated Interview Filtering

Overview

The Automated Interview Filtering System is an AI-powered tool that helps HR professionals streamline their interview process through automated analysis of video interviews, resumes, and candidate responses. The system leverages multiple AI technologies including emotion detection, speech-to-text conversion, and natural language processing to provide comprehensive candidate assessments.

Architecture

The project follows a clean, layered monolith architecture:

src/
β”œβ”€β”€ domain/      # Core business logic and entities
β”œβ”€β”€ service/     # Use cases and business rules
β”œβ”€β”€ utils/       # Helper functions and utilities
└── app.py       # Frontend interface
tests/
└── integration/ # Integration tests

Key Components

  • Domain Layer: Contains business entities, value objects, and enums
  • Service Layer: Core business logic and use cases
    • LangChain for LLM integration
    • DeepFace for emotion analysis
    • Google Speech-to-Text for audio transcription
    • LlamaParse for resume parsing
  • Frontend Interface: Gradio-based user interface
  • Utils: Helper functions and utilities

Technologies Used

  • Frontend: Gradio
  • AI/ML:
    • LangChain for LLM operations
    • DeepFace for facial emotion analysis
    • Google Speech-to-Text API
    • LlamaParse for resume parsing
  • Development Tools:
    • Python 3.9+
    • Black for code formatting
    • pytest for testing
    • pre-commit hooks

Prerequisites

  • Python 3.9 or higher
  • pip package manager
  • Git

Installation

  1. Clone the repository:
git clone https://github.com/How-to-Train-Your-AI-Dragon/Automated-Interview-Filtering.git
cd automated-interview-filtering
  1. Create and activate virtual environment:
python -m venv venv
source venv/bin/activate  # On Windows: venv\Scripts\activate
  1. Install dependencies:
pip install -r requirements.txt
  1. Set up environment variables:
cp .env.example .env
# Edit .env with your API keys and configurations

Development Setup

Code Formatting

We use Black for code formatting. To set up:

  1. Install black and pre-commit:
pip install black pre-commit
  1. Run pre-commit hooks:
pre-commit install
  1. Run Black manually:
black .
  1. Configure VS Code (optional):
{
    "python.formatting.provider": "black",
    "editor.formatOnSave": true
}

Refer to the Black documentation for more information. Reference from the article here

Git Workflow

Creating a New Branch

# Update main branch
git checkout main
git pull origin main

# Create new feature branch
git checkout -b feature/your-feature-name

Making Changes

# Stage changes
git add .

# Commit changes
git commit -m "feat: your descriptive commit message"

# Push to remote
git push origin feature/your-feature-name

Running the Application

Starting Gradio Interface

python -m src.presentation.gradio.interface

The interface will be available at http://localhost:7860

Running Tests

# Run all tests
pytest

# Run specific test file
pytest tests/unit/test_interview_analyzer.py

# Run with coverage
pytest --cov=src tests/

Configuration

Environment Variables

OPENAI_API_KEY=your_key_here
GOOGLE_SPEECH_KEY=your_key_here
LLAMAPARSE_API_KEY=your_key_here

Supported File Formats

  • Video: MP4, AVI, MOV, WMV
  • Resume: PDF, DOCX, DOC, TXT

Error Handling

The system implements comprehensive error handling for:

  • Invalid file formats
  • API failures
  • Resource limitations
  • Processing errors

Contributing

  1. Clone the repository
  2. Create your feature branch
  3. Commit your changes
  4. Push to the branch
  5. Create a Pull Request

Commit Message Format

[<type>]: <subject>

[<body>]

[<footer>]

Types:

  • feat: New feature
  • fix: Bug fix
  • docs: Documentation
  • style: Formatting
  • refactor: Code restructuring

License

This project is licensed under the MIT License. See LICENSE for more information.