Spaces:
Runtime error
Runtime error
File size: 10,721 Bytes
b6b5d48 ba984b2 b6a5660 ba984b2 b6b5d48 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 |
import numpy as np
import cv2
import os
import time
import imageio
from tqdm import tqdm
from PIL import Image
import os
import sys
sys.path.insert(1, os.path.join(sys.path[0], '..'))
import torch
import torchvision
from torchvision.utils import make_grid
from torch import Tensor
from torchvision.transforms.functional import to_tensor
def tensor_to_mp4(video, savepath, fps, rescale=True, nrow=None):
"""
video: torch.Tensor, b,c,t,h,w, 0-1
if -1~1, enable rescale=True
"""
n = video.shape[0]
video = video.permute(2, 0, 1, 3, 4) # t,n,c,h,w
nrow = int(np.sqrt(n)) if nrow is None else nrow
frame_grids = [torchvision.utils.make_grid(framesheet, nrow=nrow) for framesheet in video] # [3, grid_h, grid_w]
grid = torch.stack(frame_grids, dim=0) # stack in temporal dim [T, 3, grid_h, grid_w]
grid = torch.clamp(grid.float(), -1., 1.)
if rescale:
grid = (grid + 1.0) / 2.0
grid = (grid * 255).to(torch.uint8).permute(0, 2, 3, 1) # [T, 3, grid_h, grid_w] -> [T, grid_h, grid_w, 3]
#print(f'Save video to {savepath}')
torchvision.io.write_video(savepath, grid, fps=fps, video_codec='h264', options={'crf': '10'})
# ----------------------------------------------------------------------------------------------
def savenp2sheet(imgs, savepath, nrow=None):
""" save multiple imgs (in numpy array type) to a img sheet.
img sheet is one row.
imgs:
np array of size [N, H, W, 3] or List[array] with array size = [H,W,3]
"""
if imgs.ndim == 4:
img_list = [imgs[i] for i in range(imgs.shape[0])]
imgs = img_list
imgs_new = []
for i, img in enumerate(imgs):
if img.ndim == 3 and img.shape[0] == 3:
img = np.transpose(img,(1,2,0))
assert(img.ndim == 3 and img.shape[-1] == 3), img.shape # h,w,3
img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
imgs_new.append(img)
n = len(imgs)
if nrow is not None:
n_cols = nrow
else:
n_cols=int(n**0.5)
n_rows=int(np.ceil(n/n_cols))
print(n_cols)
print(n_rows)
imgsheet = cv2.vconcat([cv2.hconcat(imgs_new[i*n_cols:(i+1)*n_cols]) for i in range(n_rows)])
cv2.imwrite(savepath, imgsheet)
print(f'saved in {savepath}')
# ----------------------------------------------------------------------------------------------
def save_np_to_img(img, path, norm=True):
if norm:
img = (img + 1) / 2 * 255
img = img.astype(np.uint8)
image = Image.fromarray(img)
image.save(path, q=95)
# ----------------------------------------------------------------------------------------------
def npz_to_imgsheet_5d(data_path, res_dir, nrow=None,):
if isinstance(data_path, str):
imgs = np.load(data_path)['arr_0'] # NTHWC
elif isinstance(data_path, np.ndarray):
imgs = data_path
else:
raise Exception
if os.path.isdir(res_dir):
res_path = os.path.join(res_dir, f'samples.jpg')
else:
assert(res_dir.endswith('.jpg'))
res_path = res_dir
imgs = np.concatenate([imgs[i] for i in range(imgs.shape[0])], axis=0)
savenp2sheet(imgs, res_path, nrow=nrow)
# ----------------------------------------------------------------------------------------------
def npz_to_imgsheet_4d(data_path, res_path, nrow=None,):
if isinstance(data_path, str):
imgs = np.load(data_path)['arr_0'] # NHWC
elif isinstance(data_path, np.ndarray):
imgs = data_path
else:
raise Exception
print(imgs.shape)
savenp2sheet(imgs, res_path, nrow=nrow)
# ----------------------------------------------------------------------------------------------
def tensor_to_imgsheet(tensor, save_path):
"""
save a batch of videos in one image sheet with shape of [batch_size * num_frames].
data: [b,c,t,h,w]
"""
assert(tensor.dim() == 5)
b,c,t,h,w = tensor.shape
imgs = [tensor[bi,:,ti, :, :] for bi in range(b) for ti in range(t)]
torchvision.utils.save_image(imgs, save_path, normalize=True, nrow=t)
# ----------------------------------------------------------------------------------------------
def npz_to_frames(data_path, res_dir, norm, num_frames=None, num_samples=None):
start = time.time()
arr = np.load(data_path)
imgs = arr['arr_0'] # [N, T, H, W, 3]
print('original data shape: ', imgs.shape)
if num_samples is not None:
imgs = imgs[:num_samples, :, :, :, :]
print('after sample selection: ', imgs.shape)
if num_frames is not None:
imgs = imgs[:, :num_frames, :, :, :]
print('after frame selection: ', imgs.shape)
for vid in tqdm(range(imgs.shape[0]), desc='Video'):
video_dir = os.path.join(res_dir, f'video{vid:04d}')
os.makedirs(video_dir, exist_ok=True)
for fid in range(imgs.shape[1]):
frame = imgs[vid, fid, :, :, :] #HW3
save_np_to_img(frame, os.path.join(video_dir, f'frame{fid:04d}.jpg'), norm=norm)
print('Finish')
print(f'Total time = {time.time()- start}')
# ----------------------------------------------------------------------------------------------
def npz_to_gifs(data_path, res_dir, duration=0.2, start_idx=0, num_videos=None, mode='gif'):
os.makedirs(res_dir, exist_ok=True)
if isinstance(data_path, str):
imgs = np.load(data_path)['arr_0'] # NTHWC
elif isinstance(data_path, np.ndarray):
imgs = data_path
else:
raise Exception
for i in range(imgs.shape[0]):
frames = [imgs[i,j,:,:,:] for j in range(imgs[i].shape[0])] # [(h,w,3)]
if mode == 'gif':
imageio.mimwrite(os.path.join(res_dir, f'samples_{start_idx+i}.gif'), frames, format='GIF', duration=duration)
elif mode == 'mp4':
frames = [torch.from_numpy(frame) for frame in frames]
frames = torch.stack(frames, dim=0).to(torch.uint8) # [T, H, W, C]
torchvision.io.write_video(os.path.join(res_dir, f'samples_{start_idx+i}.mp4'),
frames, fps=0.5, video_codec='h264', options={'crf': '10'})
if i+ 1 == num_videos:
break
# ----------------------------------------------------------------------------------------------
def fill_with_black_squares(video, desired_len: int) -> Tensor:
if len(video) >= desired_len:
return video
return torch.cat([
video,
torch.zeros_like(video[0]).unsqueeze(0).repeat(desired_len - len(video), 1, 1, 1),
], dim=0)
# ----------------------------------------------------------------------------------------------
def load_num_videos(data_path, num_videos):
# data_path can be either data_path of np array
if isinstance(data_path, str):
videos = np.load(data_path)['arr_0'] # NTHWC
elif isinstance(data_path, np.ndarray):
videos = data_path
else:
raise Exception
if num_videos is not None:
videos = videos[:num_videos, :, :, :, :]
return videos
# ----------------------------------------------------------------------------------------------
def npz_to_video_grid(data_path, out_path, num_frames=None, fps=8, num_videos=None, nrow=None, verbose=True):
if isinstance(data_path, str):
videos = load_num_videos(data_path, num_videos)
elif isinstance(data_path, np.ndarray):
videos = data_path
else:
raise Exception
n,t,h,w,c = videos.shape
videos_th = []
for i in range(n):
video = videos[i, :,:,:,:]
images = [video[j, :,:,:] for j in range(t)]
images = [to_tensor(img) for img in images]
video = torch.stack(images)
videos_th.append(video)
if num_frames is None:
num_frames = videos.shape[1]
if verbose:
videos = [fill_with_black_squares(v, num_frames) for v in tqdm(videos_th, desc='Adding empty frames')] # NTCHW
else:
videos = [fill_with_black_squares(v, num_frames) for v in videos_th] # NTCHW
frame_grids = torch.stack(videos).permute(1, 0, 2, 3, 4) # [T, N, C, H, W]
if nrow is None:
nrow = int(np.ceil(np.sqrt(n)))
if verbose:
frame_grids = [make_grid(fs, nrow=nrow) for fs in tqdm(frame_grids, desc='Making grids')]
else:
frame_grids = [make_grid(fs, nrow=nrow) for fs in frame_grids]
if os.path.dirname(out_path) != "":
os.makedirs(os.path.dirname(out_path), exist_ok=True)
frame_grids = (torch.stack(frame_grids) * 255).to(torch.uint8).permute(0, 2, 3, 1) # [T, H, W, C]
torchvision.io.write_video(out_path, frame_grids, fps=fps, video_codec='h264', options={'crf': '10'})
# ----------------------------------------------------------------------------------------------
def npz_to_gif_grid(data_path, out_path, n_cols=None, num_videos=20):
arr = np.load(data_path)
imgs = arr['arr_0'] # [N, T, H, W, 3]
imgs = imgs[:num_videos]
n, t, h, w, c = imgs.shape
assert(n == num_videos)
n_cols = n_cols if n_cols else imgs.shape[0]
n_rows = np.ceil(imgs.shape[0] / n_cols).astype(np.int8)
H, W = h * n_rows, w * n_cols
grid = np.zeros((t, H, W, c), dtype=np.uint8)
for i in range(n_rows):
for j in range(n_cols):
if i*n_cols+j < imgs.shape[0]:
grid[:, i*h:(i+1)*h, j*w:(j+1)*w, :] = imgs[i*n_cols+j, :, :, :, :]
videos = [grid[i] for i in range(grid.shape[0])] # grid: TH'W'C
imageio.mimwrite(out_path, videos, format='GIF', duration=0.5,palettesize=256)
# ----------------------------------------------------------------------------------------------
def torch_to_video_grid(videos, out_path, num_frames, fps, num_videos=None, nrow=None, verbose=True):
"""
videos: -1 ~ 1, torch.Tensor, BCTHW
"""
n,t,h,w,c = videos.shape
videos_th = [videos[i, ...] for i in range(n)]
if verbose:
videos = [fill_with_black_squares(v, num_frames) for v in tqdm(videos_th, desc='Adding empty frames')] # NTCHW
else:
videos = [fill_with_black_squares(v, num_frames) for v in videos_th] # NTCHW
frame_grids = torch.stack(videos).permute(1, 0, 2, 3, 4) # [T, N, C, H, W]
if nrow is None:
nrow = int(np.ceil(np.sqrt(n)))
if verbose:
frame_grids = [make_grid(fs, nrow=nrow) for fs in tqdm(frame_grids, desc='Making grids')]
else:
frame_grids = [make_grid(fs, nrow=nrow) for fs in frame_grids]
if os.path.dirname(out_path) != "":
os.makedirs(os.path.dirname(out_path), exist_ok=True)
frame_grids = ((torch.stack(frame_grids) + 1) / 2 * 255).to(torch.uint8).permute(0, 2, 3, 1) # [T, H, W, C]
torchvision.io.write_video(out_path, frame_grids, fps=fps, video_codec='h264', options={'crf': '10'})
|