File size: 10,721 Bytes
b6b5d48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ba984b2
b6a5660
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ba984b2
b6b5d48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
import numpy as np
import cv2
import os
import time
import imageio
from tqdm import tqdm
from PIL import Image
import os
import sys
sys.path.insert(1, os.path.join(sys.path[0], '..'))
import torch
import torchvision
from torchvision.utils import make_grid
from torch import Tensor
from torchvision.transforms.functional import to_tensor


def tensor_to_mp4(video, savepath, fps, rescale=True, nrow=None):
    """
    video: torch.Tensor, b,c,t,h,w, 0-1
    if -1~1, enable rescale=True
    """
    n = video.shape[0]
    video = video.permute(2, 0, 1, 3, 4) # t,n,c,h,w
    nrow = int(np.sqrt(n)) if nrow is None else nrow
    frame_grids = [torchvision.utils.make_grid(framesheet, nrow=nrow) for framesheet in video] # [3, grid_h, grid_w]
    grid = torch.stack(frame_grids, dim=0) # stack in temporal dim [T, 3, grid_h, grid_w]
    grid = torch.clamp(grid.float(), -1., 1.)
    if rescale:
        grid = (grid + 1.0) / 2.0
    grid = (grid * 255).to(torch.uint8).permute(0, 2, 3, 1) # [T, 3, grid_h, grid_w] -> [T, grid_h, grid_w, 3]
    #print(f'Save video to {savepath}')
    torchvision.io.write_video(savepath, grid, fps=fps, video_codec='h264', options={'crf': '10'})

# ----------------------------------------------------------------------------------------------
def savenp2sheet(imgs, savepath, nrow=None):
    """ save multiple imgs (in numpy array type) to a img sheet.
        img sheet is one row.

    imgs: 
        np array of size [N, H, W, 3] or List[array] with array size = [H,W,3] 
    """
    if imgs.ndim == 4:
        img_list = [imgs[i] for i in range(imgs.shape[0])]
        imgs = img_list
    
    imgs_new = []
    for i, img in enumerate(imgs):
        if img.ndim == 3 and img.shape[0] == 3:
            img = np.transpose(img,(1,2,0))
        
        assert(img.ndim == 3 and img.shape[-1] == 3), img.shape # h,w,3
        img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
        imgs_new.append(img)
    n = len(imgs)
    if nrow is not None:
        n_cols = nrow
    else:
        n_cols=int(n**0.5)
    n_rows=int(np.ceil(n/n_cols))
    print(n_cols)
    print(n_rows)

    imgsheet = cv2.vconcat([cv2.hconcat(imgs_new[i*n_cols:(i+1)*n_cols]) for i in range(n_rows)])
    cv2.imwrite(savepath, imgsheet)
    print(f'saved in {savepath}')

# ----------------------------------------------------------------------------------------------
def save_np_to_img(img, path, norm=True):
    if norm:
        img = (img + 1) / 2 * 255
    img = img.astype(np.uint8)
    image = Image.fromarray(img)
    image.save(path, q=95)

# ----------------------------------------------------------------------------------------------
def npz_to_imgsheet_5d(data_path, res_dir, nrow=None,):
    if isinstance(data_path, str):
        imgs = np.load(data_path)['arr_0'] # NTHWC
    elif isinstance(data_path, np.ndarray):
        imgs = data_path
    else:
        raise Exception
    
    if os.path.isdir(res_dir):
        res_path = os.path.join(res_dir, f'samples.jpg')
    else:
        assert(res_dir.endswith('.jpg'))
        res_path = res_dir
    imgs = np.concatenate([imgs[i] for i in range(imgs.shape[0])], axis=0)
    savenp2sheet(imgs, res_path, nrow=nrow)

# ----------------------------------------------------------------------------------------------
def npz_to_imgsheet_4d(data_path, res_path, nrow=None,):
    if isinstance(data_path, str):
        imgs = np.load(data_path)['arr_0'] # NHWC
    elif isinstance(data_path, np.ndarray):
        imgs = data_path
    else:
        raise Exception
    print(imgs.shape)
    savenp2sheet(imgs, res_path, nrow=nrow)


# ----------------------------------------------------------------------------------------------
def tensor_to_imgsheet(tensor, save_path):
    """ 
        save a batch of videos in one image sheet with shape of [batch_size * num_frames].
        data: [b,c,t,h,w]
    """
    assert(tensor.dim() == 5)
    b,c,t,h,w = tensor.shape
    imgs = [tensor[bi,:,ti, :, :] for bi in range(b) for ti in range(t)]
    torchvision.utils.save_image(imgs, save_path, normalize=True, nrow=t)


# ----------------------------------------------------------------------------------------------
def npz_to_frames(data_path, res_dir, norm, num_frames=None, num_samples=None):
    start = time.time()
    arr = np.load(data_path)
    imgs = arr['arr_0'] # [N, T, H, W, 3]
    print('original data shape: ', imgs.shape)

    if num_samples is not None:
        imgs = imgs[:num_samples, :, :, :, :]
        print('after sample selection: ', imgs.shape)
    
    if num_frames is not None:
        imgs = imgs[:, :num_frames, :, :, :]
        print('after frame selection: ', imgs.shape)

    for vid in tqdm(range(imgs.shape[0]), desc='Video'):
        video_dir = os.path.join(res_dir, f'video{vid:04d}')
        os.makedirs(video_dir, exist_ok=True)
        for fid in range(imgs.shape[1]):
            frame = imgs[vid, fid, :, :, :] #HW3
            save_np_to_img(frame, os.path.join(video_dir, f'frame{fid:04d}.jpg'), norm=norm)
    print('Finish')
    print(f'Total time = {time.time()- start}')

# ----------------------------------------------------------------------------------------------
def npz_to_gifs(data_path, res_dir, duration=0.2, start_idx=0, num_videos=None, mode='gif'):
    os.makedirs(res_dir, exist_ok=True)
    if isinstance(data_path, str):
        imgs = np.load(data_path)['arr_0'] # NTHWC
    elif isinstance(data_path, np.ndarray):
        imgs = data_path
    else:
        raise Exception

    for i in range(imgs.shape[0]):
        frames = [imgs[i,j,:,:,:] for j in range(imgs[i].shape[0])] # [(h,w,3)]
        if mode == 'gif':
            imageio.mimwrite(os.path.join(res_dir, f'samples_{start_idx+i}.gif'), frames, format='GIF', duration=duration)
        elif mode == 'mp4':
            frames = [torch.from_numpy(frame) for frame in frames]
            frames = torch.stack(frames, dim=0).to(torch.uint8) # [T, H, W, C]
            torchvision.io.write_video(os.path.join(res_dir, f'samples_{start_idx+i}.mp4'),
                frames, fps=0.5, video_codec='h264', options={'crf': '10'})
        if i+ 1 == num_videos:
            break

# ----------------------------------------------------------------------------------------------
def fill_with_black_squares(video, desired_len: int) -> Tensor:
    if len(video) >= desired_len:
        return video

    return torch.cat([
        video,
        torch.zeros_like(video[0]).unsqueeze(0).repeat(desired_len - len(video), 1, 1, 1),
    ], dim=0)

# ----------------------------------------------------------------------------------------------
def load_num_videos(data_path, num_videos):
    # data_path can be either data_path of np array 
    if isinstance(data_path, str):
        videos = np.load(data_path)['arr_0'] # NTHWC
    elif isinstance(data_path, np.ndarray):
        videos = data_path
    else:
        raise Exception

    if num_videos is not None:
        videos = videos[:num_videos, :, :, :, :]
    return videos

# ----------------------------------------------------------------------------------------------
def npz_to_video_grid(data_path, out_path, num_frames=None, fps=8, num_videos=None, nrow=None, verbose=True):
    if isinstance(data_path, str):
        videos = load_num_videos(data_path, num_videos)
    elif isinstance(data_path, np.ndarray):
        videos = data_path
    else:
        raise Exception
    n,t,h,w,c = videos.shape

    videos_th = []
    for i in range(n):
        video = videos[i, :,:,:,:]
        images = [video[j, :,:,:] for j in range(t)]
        images = [to_tensor(img) for img in images]
        video = torch.stack(images)
        videos_th.append(video)
    
    if num_frames is None:
        num_frames = videos.shape[1]
    if verbose:
        videos = [fill_with_black_squares(v, num_frames) for v in tqdm(videos_th, desc='Adding empty frames')] # NTCHW
    else:
        videos = [fill_with_black_squares(v, num_frames) for v in videos_th] # NTCHW

    frame_grids = torch.stack(videos).permute(1, 0, 2, 3, 4) # [T, N, C, H, W]
    if nrow is None:
        nrow = int(np.ceil(np.sqrt(n)))
    if verbose:
        frame_grids = [make_grid(fs, nrow=nrow) for fs in tqdm(frame_grids, desc='Making grids')]
    else:
        frame_grids = [make_grid(fs, nrow=nrow) for fs in frame_grids]

    if os.path.dirname(out_path) != "":
        os.makedirs(os.path.dirname(out_path), exist_ok=True)
    frame_grids = (torch.stack(frame_grids) * 255).to(torch.uint8).permute(0, 2, 3, 1) # [T, H, W, C]
    torchvision.io.write_video(out_path, frame_grids, fps=fps, video_codec='h264', options={'crf': '10'})

# ----------------------------------------------------------------------------------------------
def npz_to_gif_grid(data_path, out_path, n_cols=None, num_videos=20):
    arr = np.load(data_path)
    imgs = arr['arr_0'] # [N, T, H, W, 3]
    imgs = imgs[:num_videos]
    n, t, h, w, c = imgs.shape
    assert(n == num_videos)
    n_cols = n_cols if n_cols else imgs.shape[0]
    n_rows = np.ceil(imgs.shape[0] / n_cols).astype(np.int8)
    H, W = h * n_rows, w * n_cols
    grid = np.zeros((t, H, W, c), dtype=np.uint8)

    for i in range(n_rows):
        for j in range(n_cols):
            if i*n_cols+j < imgs.shape[0]:
                grid[:, i*h:(i+1)*h, j*w:(j+1)*w, :] = imgs[i*n_cols+j, :, :, :, :]
    
    videos = [grid[i] for i in range(grid.shape[0])] # grid: TH'W'C
    imageio.mimwrite(out_path, videos, format='GIF', duration=0.5,palettesize=256)


# ----------------------------------------------------------------------------------------------
def torch_to_video_grid(videos, out_path, num_frames, fps, num_videos=None, nrow=None, verbose=True):
    """
    videos: -1 ~ 1, torch.Tensor, BCTHW
    """
    n,t,h,w,c = videos.shape
    videos_th = [videos[i, ...] for i in range(n)]
    if verbose:
        videos = [fill_with_black_squares(v, num_frames) for v in tqdm(videos_th, desc='Adding empty frames')] # NTCHW
    else:
        videos = [fill_with_black_squares(v, num_frames) for v in videos_th] # NTCHW

    frame_grids = torch.stack(videos).permute(1, 0, 2, 3, 4) # [T, N, C, H, W]
    if nrow is None:
        nrow = int(np.ceil(np.sqrt(n)))
    if verbose:
        frame_grids = [make_grid(fs, nrow=nrow) for fs in tqdm(frame_grids, desc='Making grids')]
    else:
        frame_grids = [make_grid(fs, nrow=nrow) for fs in frame_grids]

    if os.path.dirname(out_path) != "":
        os.makedirs(os.path.dirname(out_path), exist_ok=True)
    frame_grids = ((torch.stack(frame_grids) + 1) / 2 * 255).to(torch.uint8).permute(0, 2, 3, 1) # [T, H, W, C]
    torchvision.io.write_video(out_path, frame_grids, fps=fps, video_codec='h264', options={'crf': '10'})