Spaces:
Sleeping
Sleeping
import gradio as gr | |
import numpy as np | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
from langchain.chains import LLMChain | |
from langchain import PromptTemplate | |
import re | |
import pandas as pd | |
from langchain.vectorstores import FAISS | |
import requests | |
from typing import List | |
from langchain.schema import ( | |
SystemMessage, | |
HumanMessage, | |
AIMessage | |
) | |
import os | |
from langchain.embeddings import HuggingFaceEmbeddings | |
from langchain.chat_models import ChatOpenAI | |
from langchain.llms.base import LLM | |
from typing import Optional, List, Mapping, Any | |
import ast | |
from utils import ClaudeLLM, ClaudeLLM2, extract_website_name, remove_numbers | |
embeddings = HuggingFaceEmbeddings() | |
db_art = FAISS.load_local('db_art', embeddings) | |
db_yt = FAISS.load_local('db_yt', embeddings) | |
mp_docs = {} | |
llm_4 = ChatOpenAI( | |
temperature=0, | |
model='gpt-4' | |
) | |
claude = ClaudeLLM() | |
claude2 = ClaudeLLM2() | |
def add_text(history, text): | |
print(history) | |
history = history + [(text, None)] | |
return history, "" | |
def retrieve_thoughts(query, media): | |
if media[0] == "Articles": | |
db = db_art | |
else: | |
db = db_yt | |
# print(db.similarity_search_with_score(query = query, k = k, fetch_k = k*10)) | |
docs_with_score = db.similarity_search_with_score(query = query, k = 1500, fetch_k = len(db.index_to_docstore_id.values())) | |
df = pd.DataFrame([dict(doc[0])['metadata'] for doc in docs_with_score], ) | |
df = pd.concat((df, pd.DataFrame([dict(doc[0])['page_content'] for doc in docs_with_score], columns = ['page_content'])), axis = 1) | |
df = pd.concat((df, pd.DataFrame([doc[1] for doc in docs_with_score], columns = ['score'])), axis = 1) | |
# TO-DO: What if user query doesn't match what we provide as documents | |
# df.sort_values("score", inplace = True) | |
tier_1 = df | |
tier_2 = df[((df['score'] < 1) * (df["score"] > 0.8))] | |
tier_1 | |
chunks_1 = tier_1.groupby(['title', 'url', ]).apply(lambda x: "\n...\n".join(x.sort_values('id')['page_content'].values)).values | |
print(len(chunks_1[0])) | |
score = tier_1.groupby(['title', 'url', ]).apply(lambda x: x.sort_values('score').iloc[:3]['score'].mean()).values | |
tier_1_adjusted = tier_1.groupby(['title', 'url', ]).first().reset_index()[[ 'title', 'url']] | |
tier_1_adjusted['content'] = chunks_1 | |
tier_1_adjusted['score'] = score | |
chunks_2 = tier_2.groupby(['title', 'url', ]).apply(lambda x: "\n...\n".join(x.sort_values('id')['page_content'].values)).values | |
tier_2_adjusted = tier_2.groupby(['title', 'url', ]).first().reset_index()[[ 'title', 'url']] | |
tier_2_adjusted['content'] = chunks_2 | |
# tier_1 = [doc[0] for doc in docs if ((doc[1] < 1))][:5] | |
# tier_2 = [doc[0] for doc in docs if ((doc[1] > 0.7)*(doc[1] < 1.5))][10:15] | |
tier_1_adjusted.sort_values("score", inplace = True) | |
tier_1_adjusted['ref'] = range(1, len(tier_1_adjusted) + 1 ) | |
return {'tier 1':tier_1_adjusted[:min(len(tier_1_adjusted), 30)], 'tier 2': tier_2_adjusted.loc[:5]} | |
def get_references(query, media): | |
# TO-DO FINSIH UPP. | |
thoughts = retrieve_thoughts(query, media) | |
print(thoughts.keys()) | |
tier_1 = thoughts['tier 1'] | |
reference = tier_1[['ref', 'url', 'title']].to_dict('records') | |
return reference | |
def grab_jsons(query, media = None, tier_1 = None, ): | |
response = "" | |
if tier_1 is None: | |
thoughts = retrieve_thoughts(query, media) | |
tier_1 = thoughts['tier 1'] | |
tier_1 = list(tier_1.apply(lambda x: f"[{int(x['ref'])}] title: {x['title']}\n Content: {x.content}", axis = 1).values) | |
for i in range(3, len(tier_1), 3): | |
portion = tier_1[i - 3 :i] | |
response += '\n' + jsonify_articles(query, portion) | |
return response | |
def jsonify_articles(query, tier_1 = None): | |
if tier_1 is None: | |
thoughts = retrieve_thoughts(query) | |
tier_1 = thoughts['tier 1'] | |
tier_1 = list(tier_1.apply(lambda x: f"[{int(x['ref'])}] title: {x['title']}\n Content: {x.content}", axis = 1).values) | |
# json | |
# { | |
# 'ref': 1, | |
# 'quotes': ['quote_1', 'quote_2', 'quote_3'], | |
# 'summary (optional for now as we already have summaries)': "" | |
# } | |
session_prompt = """ A bot that is open to discussions about different cultural, philosophical and political exchanges. You will execute different analysis to the articles provided to you. Stay truthful and if you weren't provided any resources give your oppinion only.""" | |
task = """Your primary responsibility is to identify valuable information from the given articles related to a given query. | |
For each article provided, you are to present it under four separate categories: | |
1. Article Reference - A reference for the article id: int | |
2. Article Title - The title for the article: string | |
3. Article quotes - Numerous Quotes extracted from the article that prove certain point of views in a list format [quote_1, quote_2, quote_3, quote_4, quote_5] | |
4. Article Summary - A summary for the article: string | |
Make sure to include all valuable quotes to be used later on. | |
Keep your answer direct and don't include your thoughts. Make sure that the quote used should have a reference [1] that identifies the source.""" | |
prompt = PromptTemplate( | |
input_variables=["query", "task", "articles"], | |
template=""" | |
{task} | |
The extracted information should correlate to the following query. | |
query: {query} | |
Articles: | |
{articles} | |
The extracted information should be written in structured manner, ensuring clarity and meaningful format for the articles. Avoid including personal opinions or making generalizations that are not explicitly supported by the articles. | |
Keep your answer direct and don't include your thoughts. | |
""", | |
) | |
chain = LLMChain(llm=claude, prompt = prompt) | |
json_articles = chain.run(query=query, articles="\n".join(tier_1), task = task).strip() | |
return json_articles | |
reference = gr.Interface(fn = get_references, inputs = ["text", gr.CheckboxGroup(["Articles", "Podcasts", "Youtube"], label="Media", info="Choose One Type of Media until we merge (Podcasts excluded for now)"),], outputs = "json", label = "Reference") | |
json = gr.Interface(fn = grab_jsons, inputs = ["text", gr.CheckboxGroup(["Articles", "Podcasts", "Youtube"], label="Media", info="Choose One Type of Media until we merge (Podcasts excluded for now)"),], outputs = gr.components.Textbox(lines=3, label="json")) | |
demo = gr.Parallel(json, reference) | |
demo.queue(concurrency_count = 4) | |
demo.launch() | |