RashiAgarwal's picture
Update app.py
4258cd5
raw
history blame
4.47 kB
import torch
import pandas as pd
import numpy as np
import gradio as gr
from PIL import Image
from torch.nn import functional as F
from collections import OrderedDict
from torchvision import transforms
from pytorch_grad_cam import GradCAM
from pytorch_grad_cam.utils.image import show_cam_on_image
from pytorch_grad_cam.utils.model_targets import ClassifierOutputTarget
from pytorch_lightning import LightningModule, Trainer, seed_everything
import albumentations as A
from albumentations.pytorch import ToTensorV2
import torchvision.transforms as T
from model import YOLOv3
from train import YOLOTraining
import config
from utils import *
import numpy as np
import cv2
import albumentations as A
from utils import *
import random
from albumentations.pytorch import ToTensorV2
model = YOLOv3(num_classes=config.NUM_CLASSES)
model = YOLOTraining(model)
model.load_state_dict(torch.load("model.pth", map_location=torch.device('cpu')), strict=False)
model.eval()
def yolo_predict(image: np.ndarray, iou_thresh: float = 0.5, thresh: float = 0.5):
transforms = A.Compose(
[
A.LongestMaxSize(max_size=config.IMAGE_SIZE),
A.PadIfNeeded(
min_height=config.IMAGE_SIZE, min_width=config.IMAGE_SIZE, border_mode=cv2.BORDER_CONSTANT
),
A.Normalize(mean=[0, 0, 0], std=[1, 1, 1], max_pixel_value=255,),
ToTensorV2(),
],
)
with torch.no_grad():
transformed_image = transforms(image=image)["image"].unsqueeze(0).to(config.DEVICE)
output = model(transformed_image)
bboxes = [[] for _ in range(1)]
for i in range(3):
batch_size, A1, S, _, _ = output[i].shape
anchor = config.SCALED_ANCHORS[i].to(config.DEVICE)
boxes_scale_i = cells_to_bboxes(
output[i].to(config.DEVICE), anchor, S=S, is_preds=True
)
for idx, (box) in enumerate(boxes_scale_i):
bboxes[idx] += box
nms_boxes = non_max_suppression(
bboxes[0], iou_threshold=iou_thresh, threshold=thresh, box_format="midpoint",
)
plot_img = draw_predictions(image, nms_boxes, class_labels=config.PASCAL_CLASSES)
return [plot_img]
def draw_predictions(image: np.ndarray, boxes: list[list], class_labels: list[str]) -> np.ndarray:
"""Plots predicted bounding boxes on the image"""
colors = [[random.randint(0, 255) for _ in range(3)] for name in class_labels]
im = np.array(image)
height, width, _ = im.shape
bbox_thick = int(0.6 * (height + width) / 600)
# Create a Rectangle patch
for box in boxes:
assert len(box) == 6, "box should contain class pred, confidence, x, y, width, height"
class_pred = box[0]
conf = box[1]
box = box[2:]
upper_left_x = box[0] - box[2] / 2
upper_left_y = box[1] - box[3] / 2
x1 = int(upper_left_x * width)
y1 = int(upper_left_y * height)
x2 = x1 + int(box[2] * width)
y2 = y1 + int(box[3] * height)
cv2.rectangle(
image,
(x1, y1), (x2, y2),
color=colors[int(class_pred)],
thickness=bbox_thick
)
text = f"{class_labels[int(class_pred)]}: {conf:.2f}"
t_size = cv2.getTextSize(text, 0, 0.7, thickness=bbox_thick // 2)[0]
c3 = (x1 + t_size[0], y1 - t_size[1] - 3)
cv2.rectangle(image, (x1, y1), c3, colors[int(class_pred)], -1)
cv2.putText(
image,
text,
(x1, y1 - 2),
cv2.FONT_HERSHEY_SIMPLEX,
0.7,
(0, 0, 0),
bbox_thick // 2,
lineType=cv2.LINE_AA,
)
return image
demo = gr.Interface(
fn=yolo_predict,
inputs=[
gr.Image(shape=(config.IMAGE_SIZE,config.IMAGE_SIZE), label="Input Image"),
gr.Slider(0, 1, value=0.5, step=0.05, label="IOU Threshold"),
gr.Slider(0, 1, value=0.5, step=0.05, label="Threshold")
],
outputs=gr.Gallery(rows=1, columns=1),
examples=[
["examples/000001.jpg", 0.5, 0.5],
["examples/000002.jpg", 0.5, 0.5],
["examples/000003.jpg", 0.5, 0.5],
["examples/000004.jpg", 0.5, 0.5],
["examples/000005.jpg", 0.5, 0.5],
["examples/000006.jpg", 0.5, 0.5],
["examples/000007.jpg", 0.5, 0.5],
["examples/000008.jpg", 0.5, 0.5],
["examples/000009.jpg", 0.5, 0.5],
["examples/000010.jpg", 0.5, 0.5]
]
)
demo.launch()