RashiAgarwal's picture
Update app.py
4258cd5
import torch
import pandas as pd
import numpy as np
import gradio as gr
from PIL import Image
from torch.nn import functional as F
from collections import OrderedDict
from torchvision import transforms
from pytorch_grad_cam import GradCAM
from pytorch_grad_cam.utils.image import show_cam_on_image
from pytorch_grad_cam.utils.model_targets import ClassifierOutputTarget
from pytorch_lightning import LightningModule, Trainer, seed_everything
import albumentations as A
from albumentations.pytorch import ToTensorV2
import torchvision.transforms as T
from model import YOLOv3
from train import YOLOTraining
import config
from utils import *
import numpy as np
import cv2
import albumentations as A
from utils import *
import random
from albumentations.pytorch import ToTensorV2
model = YOLOv3(num_classes=config.NUM_CLASSES)
model = YOLOTraining(model)
model.load_state_dict(torch.load("model.pth", map_location=torch.device('cpu')), strict=False)
model.eval()
def yolo_predict(image: np.ndarray, iou_thresh: float = 0.5, thresh: float = 0.5):
transforms = A.Compose(
[
A.LongestMaxSize(max_size=config.IMAGE_SIZE),
A.PadIfNeeded(
min_height=config.IMAGE_SIZE, min_width=config.IMAGE_SIZE, border_mode=cv2.BORDER_CONSTANT
),
A.Normalize(mean=[0, 0, 0], std=[1, 1, 1], max_pixel_value=255,),
ToTensorV2(),
],
)
with torch.no_grad():
transformed_image = transforms(image=image)["image"].unsqueeze(0).to(config.DEVICE)
output = model(transformed_image)
bboxes = [[] for _ in range(1)]
for i in range(3):
batch_size, A1, S, _, _ = output[i].shape
anchor = config.SCALED_ANCHORS[i].to(config.DEVICE)
boxes_scale_i = cells_to_bboxes(
output[i].to(config.DEVICE), anchor, S=S, is_preds=True
)
for idx, (box) in enumerate(boxes_scale_i):
bboxes[idx] += box
nms_boxes = non_max_suppression(
bboxes[0], iou_threshold=iou_thresh, threshold=thresh, box_format="midpoint",
)
plot_img = draw_predictions(image, nms_boxes, class_labels=config.PASCAL_CLASSES)
return [plot_img]
def draw_predictions(image: np.ndarray, boxes: list[list], class_labels: list[str]) -> np.ndarray:
"""Plots predicted bounding boxes on the image"""
colors = [[random.randint(0, 255) for _ in range(3)] for name in class_labels]
im = np.array(image)
height, width, _ = im.shape
bbox_thick = int(0.6 * (height + width) / 600)
# Create a Rectangle patch
for box in boxes:
assert len(box) == 6, "box should contain class pred, confidence, x, y, width, height"
class_pred = box[0]
conf = box[1]
box = box[2:]
upper_left_x = box[0] - box[2] / 2
upper_left_y = box[1] - box[3] / 2
x1 = int(upper_left_x * width)
y1 = int(upper_left_y * height)
x2 = x1 + int(box[2] * width)
y2 = y1 + int(box[3] * height)
cv2.rectangle(
image,
(x1, y1), (x2, y2),
color=colors[int(class_pred)],
thickness=bbox_thick
)
text = f"{class_labels[int(class_pred)]}: {conf:.2f}"
t_size = cv2.getTextSize(text, 0, 0.7, thickness=bbox_thick // 2)[0]
c3 = (x1 + t_size[0], y1 - t_size[1] - 3)
cv2.rectangle(image, (x1, y1), c3, colors[int(class_pred)], -1)
cv2.putText(
image,
text,
(x1, y1 - 2),
cv2.FONT_HERSHEY_SIMPLEX,
0.7,
(0, 0, 0),
bbox_thick // 2,
lineType=cv2.LINE_AA,
)
return image
demo = gr.Interface(
fn=yolo_predict,
inputs=[
gr.Image(shape=(config.IMAGE_SIZE,config.IMAGE_SIZE), label="Input Image"),
gr.Slider(0, 1, value=0.5, step=0.05, label="IOU Threshold"),
gr.Slider(0, 1, value=0.5, step=0.05, label="Threshold")
],
outputs=gr.Gallery(rows=1, columns=1),
examples=[
["examples/000001.jpg", 0.5, 0.5],
["examples/000002.jpg", 0.5, 0.5],
["examples/000003.jpg", 0.5, 0.5],
["examples/000004.jpg", 0.5, 0.5],
["examples/000005.jpg", 0.5, 0.5],
["examples/000006.jpg", 0.5, 0.5],
["examples/000007.jpg", 0.5, 0.5],
["examples/000008.jpg", 0.5, 0.5],
["examples/000009.jpg", 0.5, 0.5],
["examples/000010.jpg", 0.5, 0.5]
]
)
demo.launch()