Spaces:
Running
Running
lakshmivairamani
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -9,9 +9,26 @@ from PIL import Image
|
|
9 |
import base64
|
10 |
from io import BytesIO
|
11 |
import os
|
|
|
|
|
|
|
12 |
import requests
|
13 |
import gradio as gr
|
14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
from langchain_core.prompts import ChatPromptTemplate
|
16 |
from langchain_core.output_parsers import StrOutputParser
|
17 |
from langchain_core.runnables import RunnableSequence, RunnableLambda
|
@@ -27,12 +44,23 @@ from PyPDF2 import PdfReader
|
|
27 |
from nltk.tokenize import sent_tokenize
|
28 |
from sqlalchemy import create_engine
|
29 |
from sqlalchemy.sql import text
|
30 |
-
|
31 |
-
import
|
32 |
-
|
|
|
|
|
|
|
|
|
33 |
|
34 |
-
open_api_key_token = os.environ['OPEN_AI_API']
|
35 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
os.environ['OPENAI_API_KEY'] = open_api_key_token
|
37 |
db_uri = 'postgresql+psycopg2://postgres:postpass@193.203.162.39:5432/warehouseAi'
|
38 |
# Database setup
|
@@ -40,8 +68,8 @@ db_uri = 'postgresql+psycopg2://postgres:postpass@193.203.162.39:5432/warehouseA
|
|
40 |
db = SQLDatabase.from_uri(db_uri)
|
41 |
|
42 |
# LLM setup
|
43 |
-
|
44 |
-
|
45 |
|
46 |
def get_schema(_):
|
47 |
schema_info = db.get_table_info() # This should be a string of your SQL schema
|
@@ -69,7 +97,7 @@ def generate_sql_query(question):
|
|
69 |
def run_query(query):
|
70 |
# Clean the query by removing markdown symbols and trimming whitespace
|
71 |
clean_query = query.replace("```sql", "").replace("```", "").strip()
|
72 |
-
|
73 |
try:
|
74 |
result = db.run(clean_query)
|
75 |
return result
|
@@ -83,7 +111,7 @@ def run_query(query):
|
|
83 |
def database_tool(question):
|
84 |
# print(question)
|
85 |
sql_query = generate_sql_query(question)
|
86 |
-
|
87 |
return run_query(sql_query)
|
88 |
|
89 |
def get_ASN_data(question):
|
@@ -149,7 +177,7 @@ def create_vector_store(texts):
|
|
149 |
|
150 |
def query_vector_store(vector_store, query):
|
151 |
docs = vector_store.similarity_search(query, k=5)
|
152 |
-
|
153 |
return docs
|
154 |
|
155 |
def summarize_document(docs):
|
@@ -167,13 +195,12 @@ def summarize_document(docs):
|
|
167 |
summarized_content = doc_content
|
168 |
summarized_docs.append(summarized_content)
|
169 |
return '\n\n'.join(summarized_docs)
|
170 |
-
|
171 |
-
#pdf_path = r"D:\rajesh\python\chat_agent\Inbound.pdf"
|
172 |
texts = load_and_split_pdf(pdf_path)
|
173 |
vector_store = create_vector_store(texts)
|
174 |
|
175 |
def document_data_tool(question):
|
176 |
-
|
177 |
# query_string = question['tags'][0] if 'tags' in question and question['tags'] else ""
|
178 |
query_response = query_vector_store(vector_store, question)
|
179 |
print("query****")
|
@@ -182,6 +209,45 @@ def document_data_tool(question):
|
|
182 |
#print("summary***")
|
183 |
#print(summarized_response)
|
184 |
return query_response
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
185 |
|
186 |
def make_api_request(url, params):
|
187 |
import requests
|
@@ -203,11 +269,7 @@ apis = [
|
|
203 |
"url": "http://193.203.162.39:9090/nxt-wms/userWarehouse/fetchWarehouseForUserId?",
|
204 |
"params": {"query": name, "userId": "164"}
|
205 |
},
|
206 |
-
|
207 |
-
{
|
208 |
-
"url": "http://193.203.162.39:9090/nxt-wms/userCustomer/fetchCustomerForUserId?",
|
209 |
-
"params": {"query": "TESTING 123", "userId": "164", "status": "Active"}
|
210 |
-
},
|
211 |
#Stock summary based on warehouse id
|
212 |
{
|
213 |
"url": "http://193.203.162.39:9090/nxt-wms/transactionHistory/stockSummary?",
|
@@ -217,12 +279,13 @@ apis = [
|
|
217 |
|
218 |
def inventory_report(question):
|
219 |
|
|
|
|
|
|
|
|
|
|
|
|
|
220 |
|
221 |
-
name = question.split(":")[0]
|
222 |
-
#print(question)
|
223 |
-
question = question.split(":")[1]
|
224 |
-
#print(name)
|
225 |
-
import requests
|
226 |
|
227 |
data = make_api_request(apis[0]["url"], apis[0]["params"])
|
228 |
if data:
|
@@ -236,11 +299,8 @@ def inventory_report(question):
|
|
236 |
if "warehouseId" in api["params"]:
|
237 |
api["params"]["warehouseId"] = warehouse_id
|
238 |
|
239 |
-
|
240 |
-
|
241 |
-
data1 = make_api_request(apis[2]["url"], apis[2]["params"])
|
242 |
-
#if data1:
|
243 |
-
#print(data1)
|
244 |
|
245 |
from tabulate import tabulate
|
246 |
|
@@ -268,22 +328,25 @@ def inventory_report(question):
|
|
268 |
table_data.append(row)
|
269 |
|
270 |
|
271 |
-
|
272 |
-
#print(tabulate(table_data, headers=headers, tablefmt="grid"))
|
273 |
-
|
274 |
-
# Convert to pandas DataFrame
|
275 |
-
import pandas as pd
|
276 |
df = pd.DataFrame(table_data, columns=headers)
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
#open api key
|
281 |
-
import openai
|
282 |
-
|
283 |
-
llm = OpenAI()
|
284 |
-
sdf = SmartDataframe(df, config={"llm": llm})
|
285 |
#chart = sdf.chat("Can you draw a bar chart with all avaialble item name and quantity.")
|
286 |
chart = sdf.chat(question)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
287 |
return chart
|
288 |
#inventory_report("WH:can you give me a bar chart with item name and quantity for the warehouse WH")
|
289 |
|
@@ -325,7 +388,19 @@ tools = [
|
|
325 |
name="dataVisualization",
|
326 |
args_schema=QueryInput,
|
327 |
output_schema=QueryOutput,
|
328 |
-
description=
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
329 |
)
|
330 |
]
|
331 |
|
@@ -342,25 +417,71 @@ llm = llm.bind()
|
|
342 |
agent = create_tool_calling_agent(llm, tools, ChatPromptTemplate.from_template(prompt_template))
|
343 |
agent_executor = AgentExecutor(agent=agent, tools=tools, verbose=True)
|
344 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
345 |
# Define the interface function
|
346 |
max_iterations = 5
|
347 |
iterations = 0
|
348 |
|
349 |
-
def answer_question(user_question,chatbot):
|
350 |
global iterations
|
351 |
iterations = 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
352 |
|
353 |
while iterations < max_iterations:
|
354 |
-
|
355 |
-
|
356 |
-
|
357 |
-
|
358 |
-
|
359 |
-
|
360 |
-
|
361 |
-
|
362 |
-
|
363 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
364 |
|
365 |
if iterations == max_iterations:
|
366 |
return "The agent could not generate a valid response within the iteration limit."
|
@@ -378,7 +499,18 @@ def answer_question(user_question,chatbot):
|
|
378 |
#image = gr.Image(value=img_str)
|
379 |
chatbot.append((user_question,img))
|
380 |
#print(chatbot)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
381 |
return gr.update(value=chatbot)
|
|
|
382 |
|
383 |
#return [(user_question,gr.Image("/home/user/app/exports/charts/temp_chart.png"))]
|
384 |
# return "/home/user/app/exports/charts/temp_chart.png"
|
@@ -432,6 +564,7 @@ with gr.Blocks(css=css) as demo:
|
|
432 |
with gr.Row():
|
433 |
with gr.Column(scale=1):
|
434 |
message = gr.Textbox(show_label=False)
|
|
|
435 |
with gr.Column(scale=1):
|
436 |
with gr.Row():
|
437 |
button = gr.Button("Submit", elem_classes="gr-button")
|
|
|
9 |
import base64
|
10 |
from io import BytesIO
|
11 |
import os
|
12 |
+
import re
|
13 |
+
import tempfile
|
14 |
+
import wave
|
15 |
import requests
|
16 |
import gradio as gr
|
17 |
+
import time
|
18 |
+
import shutil
|
19 |
+
import json
|
20 |
+
import nltk
|
21 |
+
#audio package
|
22 |
+
import speech_recognition as sr
|
23 |
+
from pydub import AudioSegment
|
24 |
+
from pydub.playback import play
|
25 |
+
#email library
|
26 |
+
import smtplib
|
27 |
+
from email.mime.multipart import MIMEMultipart
|
28 |
+
from email.mime.text import MIMEText
|
29 |
+
from email.mime.base import MIMEBase
|
30 |
+
from email import encoders
|
31 |
+
#langchain
|
32 |
from langchain_core.prompts import ChatPromptTemplate
|
33 |
from langchain_core.output_parsers import StrOutputParser
|
34 |
from langchain_core.runnables import RunnableSequence, RunnableLambda
|
|
|
44 |
from nltk.tokenize import sent_tokenize
|
45 |
from sqlalchemy import create_engine
|
46 |
from sqlalchemy.sql import text
|
47 |
+
#google
|
48 |
+
from google.colab import userdata
|
49 |
+
from google.colab import drive
|
50 |
+
#pandas
|
51 |
+
import pandas as pd
|
52 |
+
from pandasai.llm.openai import OpenAI
|
53 |
+
from pandasai import SmartDataframe
|
54 |
|
|
|
55 |
|
56 |
+
|
57 |
+
|
58 |
+
nltk.download('punkt')
|
59 |
+
|
60 |
+
drive.mount('/content/drive', force_remount=True)
|
61 |
+
open_api_key_token = userdata.get('OPENAI_API_KEY')
|
62 |
+
postgresql_connection = userdata.get('POSTGRESQL_CONNECTION')
|
63 |
+
pdf_path="Inbound.pdf"
|
64 |
os.environ['OPENAI_API_KEY'] = open_api_key_token
|
65 |
db_uri = 'postgresql+psycopg2://postgres:postpass@193.203.162.39:5432/warehouseAi'
|
66 |
# Database setup
|
|
|
68 |
db = SQLDatabase.from_uri(db_uri)
|
69 |
|
70 |
# LLM setup
|
71 |
+
llm = ChatOpenAI(model="gpt-4o-mini",max_tokens=300,temperature=0.1)
|
72 |
+
llm_chart = OpenAI()
|
73 |
|
74 |
def get_schema(_):
|
75 |
schema_info = db.get_table_info() # This should be a string of your SQL schema
|
|
|
97 |
def run_query(query):
|
98 |
# Clean the query by removing markdown symbols and trimming whitespace
|
99 |
clean_query = query.replace("```sql", "").replace("```", "").strip()
|
100 |
+
print(f"Executing SQL Query: {clean_query}")
|
101 |
try:
|
102 |
result = db.run(clean_query)
|
103 |
return result
|
|
|
111 |
def database_tool(question):
|
112 |
# print(question)
|
113 |
sql_query = generate_sql_query(question)
|
114 |
+
print(sql_query)
|
115 |
return run_query(sql_query)
|
116 |
|
117 |
def get_ASN_data(question):
|
|
|
177 |
|
178 |
def query_vector_store(vector_store, query):
|
179 |
docs = vector_store.similarity_search(query, k=5)
|
180 |
+
print(f"Vector store return: {docs}")
|
181 |
return docs
|
182 |
|
183 |
def summarize_document(docs):
|
|
|
195 |
summarized_content = doc_content
|
196 |
summarized_docs.append(summarized_content)
|
197 |
return '\n\n'.join(summarized_docs)
|
198 |
+
|
|
|
199 |
texts = load_and_split_pdf(pdf_path)
|
200 |
vector_store = create_vector_store(texts)
|
201 |
|
202 |
def document_data_tool(question):
|
203 |
+
print(f"Document data tool enter: {question}")
|
204 |
# query_string = question['tags'][0] if 'tags' in question and question['tags'] else ""
|
205 |
query_response = query_vector_store(vector_store, question)
|
206 |
print("query****")
|
|
|
209 |
#print("summary***")
|
210 |
#print(summarized_response)
|
211 |
return query_response
|
212 |
+
|
213 |
+
def send_email_with_attachment(recipient_email, subject, body, attachment_path):
|
214 |
+
sender_email = "learning.rajeshthangaraj1@gmail.com"
|
215 |
+
sender_password = "mkeogppbcjgrdfpg"
|
216 |
+
|
217 |
+
# Create a multipart message
|
218 |
+
msg = MIMEMultipart()
|
219 |
+
msg['From'] = sender_email
|
220 |
+
msg['To'] = recipient_email
|
221 |
+
msg['Subject'] = subject
|
222 |
+
|
223 |
+
# Attach the body with the msg instance
|
224 |
+
msg.attach(MIMEText(body, 'plain'))
|
225 |
+
|
226 |
+
# Open the file to be sent
|
227 |
+
attachment = open(attachment_path, "rb")
|
228 |
+
|
229 |
+
# Instance of MIMEBase and named as p
|
230 |
+
part = MIMEBase('application', 'octet-stream')
|
231 |
+
|
232 |
+
# To change the payload into encoded form
|
233 |
+
part.set_payload((attachment).read())
|
234 |
+
|
235 |
+
# Encode into base64
|
236 |
+
encoders.encode_base64(part)
|
237 |
+
|
238 |
+
part.add_header('Content-Disposition', f"attachment; filename= {attachment_path}")
|
239 |
+
|
240 |
+
# Attach the instance 'part' to instance 'msg'
|
241 |
+
msg.attach(part)
|
242 |
+
|
243 |
+
# Create SMTP session for sending the mail
|
244 |
+
server = smtplib.SMTP('smtp.gmail.com', 587)
|
245 |
+
server.starttls()
|
246 |
+
server.login(sender_email, sender_password)
|
247 |
+
text = msg.as_string()
|
248 |
+
server.sendmail(sender_email, recipient_email, text)
|
249 |
+
server.quit()
|
250 |
+
#return 1
|
251 |
|
252 |
def make_api_request(url, params):
|
253 |
import requests
|
|
|
269 |
"url": "http://193.203.162.39:9090/nxt-wms/userWarehouse/fetchWarehouseForUserId?",
|
270 |
"params": {"query": name, "userId": "164"}
|
271 |
},
|
272 |
+
|
|
|
|
|
|
|
|
|
273 |
#Stock summary based on warehouse id
|
274 |
{
|
275 |
"url": "http://193.203.162.39:9090/nxt-wms/transactionHistory/stockSummary?",
|
|
|
279 |
|
280 |
def inventory_report(question):
|
281 |
|
282 |
+
# Split the question to extract warehouse name, user question, and optional email
|
283 |
+
parts = question.split(":", 2)
|
284 |
+
name = parts[0].strip()
|
285 |
+
user_question = parts[1].strip()
|
286 |
+
user_email = parts[2].strip() if len(parts) > 2 else None
|
287 |
+
print(f"Warehouse: {name}, Email: {user_email}, Question: {user_question}")
|
288 |
|
|
|
|
|
|
|
|
|
|
|
289 |
|
290 |
data = make_api_request(apis[0]["url"], apis[0]["params"])
|
291 |
if data:
|
|
|
299 |
if "warehouseId" in api["params"]:
|
300 |
api["params"]["warehouseId"] = warehouse_id
|
301 |
|
302 |
+
|
303 |
+
data1 = make_api_request(apis[1]["url"], apis[1]["params"])
|
|
|
|
|
|
|
304 |
|
305 |
from tabulate import tabulate
|
306 |
|
|
|
328 |
table_data.append(row)
|
329 |
|
330 |
|
331 |
+
# Convert to pandas DataFrame
|
|
|
|
|
|
|
|
|
332 |
df = pd.DataFrame(table_data, columns=headers)
|
333 |
+
|
334 |
+
sdf = SmartDataframe(df, config={"llm": llm_chart})
|
335 |
+
|
|
|
|
|
|
|
|
|
|
|
336 |
#chart = sdf.chat("Can you draw a bar chart with all avaialble item name and quantity.")
|
337 |
chart = sdf.chat(question)
|
338 |
+
|
339 |
+
#email send
|
340 |
+
if user_email:
|
341 |
+
# Send email with the chart image attached
|
342 |
+
send_email_with_attachment(
|
343 |
+
recipient_email=user_email,
|
344 |
+
subject="Warehouse Inventory Report",
|
345 |
+
body="Please find the attached bar chart report for the warehouse inventory analysis.",
|
346 |
+
#attachment_path=chart_path
|
347 |
+
attachment_path="/content/exports/charts/temp_chart.png"
|
348 |
+
)
|
349 |
+
|
350 |
return chart
|
351 |
#inventory_report("WH:can you give me a bar chart with item name and quantity for the warehouse WH")
|
352 |
|
|
|
388 |
name="dataVisualization",
|
389 |
args_schema=QueryInput,
|
390 |
output_schema=QueryOutput,
|
391 |
+
description = """
|
392 |
+
Tool to generate a visual output (such as a bar chart) for a particular warehouse based on the provided question.
|
393 |
+
This tool processes the user question to identify the warehouse name and the specific request. If the user specifies
|
394 |
+
an email, include the email in the input. The input format should be: 'warehouse name: user question: email (if any)'.
|
395 |
+
The tool generates the requested chart and sends it to the provided email if specified.
|
396 |
+
|
397 |
+
Examples:
|
398 |
+
1. Question without email: "Analyze item name and quantity in a bar chart in warehouse Allcargo Logistics"
|
399 |
+
Input to tool: "Allcargo Logistics: I want to analyze item name and quantity in a bar chart"
|
400 |
+
|
401 |
+
2. Question with email: "Analyze item name and quantity in a bar chart in warehouse Allcargo Logistics report to send email to example@example.com"
|
402 |
+
Input to tool: "Allcargo Logistics: I want to analyze item name and quantity in a bar chart: example@example.com"
|
403 |
+
"""
|
404 |
)
|
405 |
]
|
406 |
|
|
|
417 |
agent = create_tool_calling_agent(llm, tools, ChatPromptTemplate.from_template(prompt_template))
|
418 |
agent_executor = AgentExecutor(agent=agent, tools=tools, verbose=True)
|
419 |
|
420 |
+
def ensure_temp_chart_dir():
|
421 |
+
temp_chart_dir = "/content/exports/charts/"
|
422 |
+
if not os.path.exists(temp_chart_dir):
|
423 |
+
os.makedirs(temp_chart_dir)
|
424 |
+
|
425 |
+
def clean_gradio_tmp_dir():
|
426 |
+
tmp_dir = "/tmp/gradio/"
|
427 |
+
if os.path.exists(tmp_dir):
|
428 |
+
try:
|
429 |
+
shutil.rmtree(tmp_dir)
|
430 |
+
except Exception as e:
|
431 |
+
print(f"Error cleaning up /tmp/gradio/ directory: {e}")
|
432 |
+
|
433 |
# Define the interface function
|
434 |
max_iterations = 5
|
435 |
iterations = 0
|
436 |
|
437 |
+
def answer_question(user_question, chatbot, audio=None):
|
438 |
global iterations
|
439 |
iterations = 0
|
440 |
+
# Ensure the temporary chart directory exists
|
441 |
+
#ensure_temp_chart_dir()
|
442 |
+
# Clean the /tmp/gradio/ directory
|
443 |
+
#clean_gradio_tmp_dir()
|
444 |
+
# Handle audio input if provided
|
445 |
+
if audio is not None:
|
446 |
+
sample_rate, audio_data = audio
|
447 |
+
audio_segment = AudioSegment(
|
448 |
+
audio_data.tobytes(),
|
449 |
+
frame_rate=sample_rate,
|
450 |
+
sample_width=audio_data.dtype.itemsize,
|
451 |
+
channels=1
|
452 |
+
)
|
453 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as temp_audio_file:
|
454 |
+
audio_segment.export(temp_audio_file.name, format="wav")
|
455 |
+
temp_audio_file_path = temp_audio_file.name
|
456 |
+
|
457 |
+
recognizer = sr.Recognizer()
|
458 |
+
with sr.AudioFile(temp_audio_file_path) as source:
|
459 |
+
audio_content = recognizer.record(source)
|
460 |
+
try:
|
461 |
+
user_question = recognizer.recognize_google(audio_content)
|
462 |
+
except sr.UnknownValueError:
|
463 |
+
user_question = "Sorry, I could not understand the audio."
|
464 |
+
except sr.RequestError:
|
465 |
+
user_question = "Could not request results from Google Speech Recognition service."
|
466 |
|
467 |
while iterations < max_iterations:
|
468 |
+
print(user_question)
|
469 |
+
if "send email to" in user_question:
|
470 |
+
email_match = re.search(r"send email to ([\w\.-]+@[\w\.-]+)", user_question)
|
471 |
+
if email_match:
|
472 |
+
user_email = email_match.group(1).strip()
|
473 |
+
user_question = user_question.replace(f"send email to {user_email}", "").strip()
|
474 |
+
user_question = f"{user_question}:{user_email}"
|
475 |
+
|
476 |
+
response = agent_executor.invoke({"input": user_question})
|
477 |
+
|
478 |
+
if isinstance(response, dict):
|
479 |
+
response_text = response.get("output", "")
|
480 |
+
else:
|
481 |
+
response_text = response
|
482 |
+
if "invalid" not in response_text.lower():
|
483 |
+
break
|
484 |
+
iterations += 1
|
485 |
|
486 |
if iterations == max_iterations:
|
487 |
return "The agent could not generate a valid response within the iteration limit."
|
|
|
499 |
#image = gr.Image(value=img_str)
|
500 |
chatbot.append((user_question,img))
|
501 |
#print(chatbot)
|
502 |
+
if "send email to" in user_question:
|
503 |
+
try:
|
504 |
+
os.remove(image_path) # Clean up the temporary image file
|
505 |
+
except Exception as e:
|
506 |
+
print(f"Error cleaning up image file: {e}")
|
507 |
+
except Exception as e:
|
508 |
+
print(f"Error loading image file: {e}")
|
509 |
+
chatbot.append((user_question, "Chart generation failed. Please try again."))
|
510 |
+
else:
|
511 |
+
chatbot.append((user_question, "Chart generation failed. Please try again."))
|
512 |
return gr.update(value=chatbot)
|
513 |
+
|
514 |
|
515 |
#return [(user_question,gr.Image("/home/user/app/exports/charts/temp_chart.png"))]
|
516 |
# return "/home/user/app/exports/charts/temp_chart.png"
|
|
|
564 |
with gr.Row():
|
565 |
with gr.Column(scale=1):
|
566 |
message = gr.Textbox(show_label=False)
|
567 |
+
audio_input = gr.Audio(label="Record your question")
|
568 |
with gr.Column(scale=1):
|
569 |
with gr.Row():
|
570 |
button = gr.Button("Submit", elem_classes="gr-button")
|