|
import streamlit as st |
|
import torch |
|
from transformers import AutoTokenizer, AutoModelForSequenceClassification |
|
import fitz |
|
import os |
|
|
|
|
|
longformer_model = AutoModelForSequenceClassification.from_pretrained("Reem333/Longformer") |
|
longformer_tokenizer = AutoTokenizer.from_pretrained("allenai/longformer-base-4096") |
|
|
|
|
|
bert_model = AutoModelForSequenceClassification.from_pretrained("Reem333/BERT") |
|
bert_tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-uncased") |
|
|
|
|
|
def extract_text_from_pdf(file_path): |
|
text = '' |
|
try: |
|
with fitz.open(file_path) as pdf_document: |
|
for page_number in range(pdf_document.page_count): |
|
page = pdf_document.load_page(page_number) |
|
text += page.get_text() |
|
except Exception as e: |
|
st.error(f"Error reading PDF file: {e}") |
|
return text |
|
|
|
|
|
def predict_class(text, model, tokenizer): |
|
try: |
|
max_length = 4096 if "longformer" in str(model) else 512 |
|
truncated_text = text[:max_length] |
|
|
|
inputs = tokenizer(truncated_text, return_tensors="pt", padding=True, truncation=True, max_length=max_length) |
|
with torch.no_grad(): |
|
outputs = model(**inputs) |
|
logits = outputs.logits |
|
predicted_class = torch.argmax(logits, dim=1).item() |
|
return predicted_class |
|
except Exception as e: |
|
st.error(f"Error during prediction: {e}") |
|
return None |
|
|
|
|
|
uploaded_files_dir = "uploaded_files" |
|
os.makedirs(uploaded_files_dir, exist_ok=True) |
|
|
|
|
|
class_colors = { |
|
0: "#d62728", |
|
1: "#ff7f0e", |
|
2: "#2ca02c", |
|
3: "#1f77b4" |
|
} |
|
|
|
|
|
st.set_page_config(page_title="Paper Citation Classifier", page_icon="logo.png") |
|
|
|
|
|
with st.sidebar: |
|
st.image("logo.png", width=70) |
|
st.markdown('<div style="position: absolute; left: 5px;"></div>', unsafe_allow_html=True) |
|
st.markdown("# Paper Citation Classifier") |
|
st.markdown("---") |
|
st.markdown("## About") |
|
st.markdown(''' |
|
This tool classifies paper citations into different levels based on their number of citations. |
|
Powered by Fine-Tuned [Longformer model](https://huggingface.co/REEM-ALRASHIDI/LongFormer-Paper-Citaion-Classifier) and BERT model with custom data. |
|
''') |
|
st.markdown("### Class Levels:") |
|
st.markdown("- Level 1: Highly cited papers") |
|
st.markdown("- Level 2: Average cited papers") |
|
st.markdown("- Level 3: More cited papers") |
|
st.markdown("- Level 4: Low cited papers") |
|
st.markdown("---") |
|
st.markdown('Tabuk University') |
|
|
|
st.title("Check Your Paper Now!") |
|
|
|
|
|
option = st.radio("Select input type:", ("Text", "PDF")) |
|
|
|
if option == "Text": |
|
title_input = st.text_area("Enter Title:") |
|
abstract_input = st.text_area("Enter Abstract:") |
|
full_text_input = st.text_area("Enter Full Text:") |
|
affiliations_input = st.text_area("Enter Affiliations:") |
|
keywords_input = st.text_area("Enter Keywords:") |
|
options = ['cs', "AI"] |
|
|
|
selected_category = st.selectbox("Select WoS categories:", options) |
|
if selected_category == "Other": |
|
custom_category = st.text_input("Enter custom category:") |
|
selected_category = custom_category if custom_category else "Other" |
|
|
|
combined_text = f"{title_input} [SEP] {keywords_input} [SEP] {abstract_input} [SEP] {selected_category} [SEP] {affiliations_input} [SEP] {full_text_input}" |
|
|
|
if st.button("Predict"): |
|
if not any([title_input, abstract_input, keywords_input, full_text_input, affiliations_input]): |
|
st.warning("Please enter paper text.") |
|
else: |
|
with st.spinner("Predicting..."): |
|
longformer_class = predict_class(combined_text, longformer_model, longformer_tokenizer) |
|
bert_class = predict_class(combined_text, bert_model, bert_tokenizer) |
|
if longformer_class is not None and bert_class is not None: |
|
class_labels = ["Level 1", "Level 2", "Level 3", "Level 4"] |
|
|
|
st.text("Longformer Predicted Class:") |
|
for i, label in enumerate(class_labels): |
|
if i == longformer_class: |
|
st.markdown( |
|
f'<div style="background-color: {class_colors[longformer_class]}; padding: 10px; border-radius: 5px; color: white; font-weight: bold;">{label}</div>', |
|
unsafe_allow_html=True |
|
) |
|
else: |
|
st.text(label) |
|
|
|
st.text("BERT Predicted Class:") |
|
for i, label in enumerate(class_labels): |
|
if i == bert_class: |
|
st.markdown( |
|
f'<div style="background-color: {class_colors[bert_class]}; padding: 10px; border-radius: 5px; color: white; font-weight: bold;">{label}</div>', |
|
unsafe_allow_html=True |
|
) |
|
else: |
|
st.text(label) |
|
|
|
|