Spaces:
Runtime error
Runtime error
import gradio as gr | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
import torch | |
# Load the model and tokenizer from Hugging Face | |
model_name = "Rehman1603/airline_guidenece" # Replace with your Hugging Face model name | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto") | |
# Prepare the model for inference | |
model.eval() | |
# Define the Alpaca prompt format | |
alpaca_prompt = """Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request. | |
### Response: | |
{}""" | |
def chat_with_model(instruction): | |
# Format the input with the Alpaca prompt | |
formatted_input = alpaca_prompt.format(instruction) | |
# Tokenize the input | |
inputs = tokenizer( | |
formatted_input, | |
return_tensors="pt", | |
).to("cuda") | |
# Generate the response | |
outputs = model.generate(**inputs, max_new_tokens=64, use_cache=True) | |
decoded_output = tokenizer.batch_decode(outputs, skip_special_tokens=True)[0] | |
# Extract the response part after "### Response:" | |
response_start = decoded_output.find("### Response:") + len("### Response:") | |
response_text = decoded_output[response_start:].strip() | |
return response_text | |
# Create a Gradio interface | |
interface = gr.Interface( | |
fn=chat_with_model, | |
inputs=gr.Textbox(lines=2, placeholder="Enter your instruction here..."), | |
outputs="text", | |
title="Airline Guidance Chatbot", | |
description="Ask questions about airline guidance and get responses from the model.", | |
) | |
# Launch the Gradio app | |
interface.launch() |