File size: 7,571 Bytes
01c8601
 
19cb3e9
bb7ed14
19cb3e9
 
01c8601
19cb3e9
01c8601
 
 
19cb3e9
 
 
 
01c8601
 
 
 
 
 
 
19cb3e9
 
 
 
 
 
 
 
a81e960
 
 
 
 
19cb3e9
 
 
 
7f597d1
01c8601
 
 
19cb3e9
a81e960
 
01c8601
 
 
 
 
 
 
 
 
 
a81e960
 
 
 
7f597d1
01c8601
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a81e960
bb7ed14
 
01c8601
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19cb3e9
01c8601
 
a81e960
 
 
 
 
 
01c8601
a81e960
 
 
 
 
 
01c8601
a81e960
 
 
 
 
01c8601
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
import os
import torch
import gradio as gr
import numpy as np
from PIL import Image
import matplotlib.pyplot as plt
from diffusers import DiffusionPipeline
from transformers import CLIPSegProcessor, CLIPSegForImageSegmentation

from share_btn import community_icon_html, loading_icon_html, share_js


processor = CLIPSegProcessor.from_pretrained("CIDAS/clipseg-rd64-refined")
model = CLIPSegForImageSegmentation.from_pretrained("CIDAS/clipseg-rd64-refined")

pipe = DiffusionPipeline.from_pretrained(
    "Fantasy-Studio/Paint-by-Example",
    torch_dtype=torch.float16,
)
pipe = pipe.to("cuda")


def process_image(image, prompt):
    inputs = processor(text=prompt, images=image, padding="max_length", return_tensors="pt")
  
    # predict
    with torch.no_grad():
        outputs = model(**inputs)
        preds = outputs.logits
  
    filename = "mask.png"
    preds = torch.sigmoid(preds)
    preds[preds >= 0.5] = 1
    preds[preds < 0.5] = 0
    plt.imsave(filename, preds)
    return Image.open("mask.png").convert("RGB")


def read_content(file_path):
    with open(file_path, "r", encoding="utf-8") as f:
        content = f.read()
    return content


def predict(input_image, text_query, reference, scale, seed, step):
    width, height = input_image.size
    if width < height:
        factor = width / 512.0
        width = 512
        height = int((height / factor) / 8.0) * 8

    else:
        factor = height / 512.0
        height = 512
        width = int((width / factor) / 8.0) * 8

    init_image = input_image.convert("RGB").resize((width, height))
    mask = process_image(input_image, text_query).resize((width, height))
    #mask = dict["mask"].convert("RGB").resize((width, height))

    generator = torch.Generator("cuda").manual_seed(seed) if seed != 0 else None
    output = pipe(
        image=init_image,
        mask_image=mask,
        example_image=reference,
        generator=generator,
        guidance_scale=scale,
        num_inference_steps=step,
    ).images[0]

    return output, gr.update(visible=True), gr.update(visible=True), gr.update(visible=True)


css = '''
.container {max-width: 1150px;margin: auto;padding-top: 1.5rem}
#image_upload{min-height:400px}
#image_upload [data-testid="image"], #image_upload [data-testid="image"] > div{min-height: 400px}
#mask_radio .gr-form{background:transparent; border: none}
#word_mask{margin-top: .75em !important}
#word_mask textarea:disabled{opacity: 0.3}
.footer {margin-bottom: 45px;margin-top: 35px;text-align: center;border-bottom: 1px solid #e5e5e5}
.footer>p {font-size: .8rem; display: inline-block; padding: 0 10px;transform: translateY(10px);background: white}
.dark .footer {border-color: #303030}
.dark .footer>p {background: #0b0f19}
.acknowledgments h4{margin: 1.25em 0 .25em 0;font-weight: bold;font-size: 115%}
#image_upload .touch-none{display: flex}
@keyframes spin {
    from {
        transform: rotate(0deg);
    }
    to {
        transform: rotate(360deg);
    }
}
#share-btn-container {
    display: flex; padding-left: 0.5rem !important; padding-right: 0.5rem !important; background-color: #000000; justify-content: center; align-items: center; border-radius: 9999px !important; width: 13rem;
}
#share-btn {
    all: initial; color: #ffffff;font-weight: 600; cursor:pointer; font-family: 'IBM Plex Sans', sans-serif; margin-left: 0.5rem !important; padding-top: 0.25rem !important; padding-bottom: 0.25rem !important;
}
#share-btn * {
    all: unset;
}
#share-btn-container div:nth-child(-n+2){
    width: auto !important;
    min-height: 0px !important;
}
#share-btn-container .wrap {
    display: none !important;
}
'''
example = {}
ref_dir = 'examples/reference'
image_dir = 'examples/image'
ref_list = [os.path.join(ref_dir, file) for file in os.listdir(ref_dir)]
ref_list.sort()
image_list = [os.path.join(image_dir, file) for file in os.listdir(image_dir)]
image_list.sort()


image_blocks = gr.Blocks(css=css)
with image_blocks as demo:
    gr.HTML(read_content("header.html"))
    with gr.Group():
        with gr.Box():
            with gr.Row():
                with gr.Column():
                    image = gr.Image(source="upload", elem_id="image_upload", type="pil", label="Source Image")
                    text = gr.Textbox(lines=1, placeholder="Clothing item you want to replace...")
                    reference = gr.Image(source="upload", elem_id="image_upload", type="pil", label="Reference Image")

                with gr.Column():
                    image_out = gr.Image(label="Output", elem_id="output-img").style(height=400)
                    guidance = gr.Slider(label="Guidance scale", value=5, maximum=15,interactive=True)
                    steps = gr.Slider(label="Steps", value=50, minimum=2, maximum=75, step=1,interactive=True)

                    seed = gr.Slider(0, 10000, label='Seed (0 = random)', value=0, step=1)

                    with gr.Row(elem_id="prompt-container").style(mobile_collapse=False, equal_height=True):
                        btn = gr.Button("Paint!").style(
                            margin=False,
                            rounded=(False, True, True, False),
                            full_width=True,
                        )
                    with gr.Group(elem_id="share-btn-container"):
                        community_icon = gr.HTML(community_icon_html, visible=True)
                        loading_icon = gr.HTML(loading_icon_html, visible=True)
                        share_button = gr.Button("Share to community", elem_id="share-btn", visible=True)

            with gr.Row():
                with gr.Column():
                    gr.Examples(
                        image_list, 
                        inputs=[image], 
                        label="Examples - Source Image",
                        examples_per_page=12
                    )
                with gr.Column():
                    gr.Examples(
                        ref_list, 
                        inputs=[reference], 
                        label="Examples - Reference Image",
                        examples_per_page=12
                    )
            
            btn.click(
                fn=predict, 
                inputs=[image, text, reference, guidance, seed, steps], 
                outputs=[image_out, community_icon, loading_icon, share_button]
            )
            share_button.click(None, [], [], _js=share_js)

            gr.HTML(
                """
                    <div class="footer">
                        <p>Gradio Demo by πŸ€— Hugging Face
                        </p>
                    </div>
                    <div class="acknowledgments">
                        <p><h4>LICENSE</h4>
        The model is licensed with a <a href="https://huggingface.co/spaces/CompVis/stable-diffusion-license" style="text-decoration: underline;" target="_blank">CreativeML Open RAIL-M</a> license. The authors claim no rights on the outputs you generate, you are free to use them and are accountable for their use which must not go against the provisions set in this license. The license forbids you from sharing any content that violates any laws, produce any harm to a person, disseminate any personal information that would be meant for harm, spread misinformation and target vulnerable groups. For the full list of restrictions please <a href="https://huggingface.co/spaces/CompVis/stable-diffusion-license" target="_blank" style="text-decoration: underline;" target="_blank">read the license</a></p>
                """
            )

image_blocks.launch()