# Importing libraries for gradio app import gradio as gr import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from torchvision import models import torchvision.transforms as tt from PIL import Image # Moving both Data and Model into GPU def get_default_device(): """Pick GPU if available, else CPU""" if torch.cuda.is_available(): return torch.device('cuda') else: return torch.device('cpu') def to_device(data, device): """Move tensor(s) to chosen device""" if isinstance(data, (list,tuple)): return [to_device(x, device) for x in data] return data.to(device, non_blocking=True) class DeviceDataLoader(): """Wrap a dataloader to move data to a device""" def __init__(self, dl, device): self.dl = dl self.device = device def __iter__(self): """Yield a batch of data after moving it to device""" for b in self.dl: yield to_device(b, self.device) def __len__(self): """Number of batches""" return len(self.dl) # Defining our Class for just prediction def accuracy(outputs, labels): _, preds = torch.max(outputs, dim=1) return torch.tensor(torch.sum(preds == labels).item() / len(preds)) class ImageClassificationBase(nn.Module): def validation_step(self, batch): images, labels = batch out = self(images) # Generate predictions loss = F.cross_entropy(out, labels) # Calculate loss acc = accuracy(out, labels) # Calculate accuracy return {'val_loss': loss.detach(), 'val_acc': acc} def validation_epoch_end(self, outputs): batch_losses = [x['val_loss'] for x in outputs] epoch_loss = torch.stack(batch_losses).mean() # Combine losses batch_accs = [x['val_acc'] for x in outputs] epoch_acc = torch.stack(batch_accs).mean() # Combine accuracies return {'val_loss': epoch_loss.item(), 'val_acc': epoch_acc.item()} # Defining our finetuned Resnet50 Architecture with our Classification layer class IndianFoodModelResnet50(ImageClassificationBase): def __init__(self, num_classes, pretrained=True): super().__init__() # Use a pretrained model self.network = models.resnet50(pretrained=pretrained) # Replace last layer self.network.fc = nn.Linear(self.network.fc.in_features, num_classes) def forward(self, xb): return self.network(xb) # for prediction @torch.no_grad() def evaluate(model, val_loader): model.eval() outputs = [model.validation_step(batch) for batch in val_loader] return model.validation_epoch_end(outputs) # initialising our model and moving it to GPU classes = ['burger', 'butter_naan', 'chai', 'chapati', 'chole_bhature', 'dal_makhani', 'dhokla', 'fried_rice', 'idli', 'jalebi', 'kaathi_rolls', 'kadai_paneer', 'kulfi', 'masala_dosa', 'momos', 'paani_puri', 'pakode', 'pav_bhaji', 'pizza', 'samosa'] model = IndianFoodModelResnet50(len(classes), pretrained=True) device = torch.device("cpu") to_device(model, device); # loading the model ckp_path = 'indianFood-resnet50.pth' model.load_state_dict(torch.load(ckp_path, map_location=torch.device('cpu'))) model.eval() # image preprocessing before prediction stats = ((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)) img_tfms = tt.Compose([tt.Resize((224, 224)), tt.ToTensor(), tt.Normalize(*stats, inplace = True)]) def predict_image(image, model): # Convert to a batch of 1 xb = to_device(image.unsqueeze(0), device) # Get predictions from model yb = model(xb) # Pick index with highest probability _, preds = torch.max(yb, dim=1) # Retrieve the class label return classes[preds[0].item()] def classify_image(path): img = Image.open(path) img = img_tfms(img) #img = img.permute(2, 0, 1) label = predict_image(img, model) return label image = gr.inputs.Image(shape=(224, 224), type="filepath") label = gr.outputs.Label(num_top_classes=1) article = "

DesiVisionNet | GitHub Repo

visitor badge
" gr.Interface( fn=classify_image, inputs=image, outputs=label, examples = [["idli.jpg"], ["naan.jpg"]], theme = "huggingface", layout = "horizontal", title = "DesiVisionNet: Desi Food Vision with ResNet", description = "This is a Gradio demo for multi-class image classification of Indian food amongst 20 classes. The DesiVisionNet achieved 90% accuracy on our test dataset, performing well for a relatively efficient model. See the GitHub project page for detailed information below. Here, we provide a demo for real-world food classification. To use it, simply upload your image, or click one of the examples to load them.", article = article ).launch()