|
|
|
import itertools |
|
import numpy as np |
|
|
|
import torch |
|
import torch.nn as nn |
|
|
|
from . import JPEG_utils |
|
|
|
|
|
class rgb_to_ycbcr_jpeg(nn.Module): |
|
""" Converts RGB image to YCbCr |
|
|
|
""" |
|
def __init__(self): |
|
super(rgb_to_ycbcr_jpeg, self).__init__() |
|
matrix = np.array( |
|
[[0.299, 0.587, 0.114], [-0.168736, -0.331264, 0.5], |
|
[0.5, -0.418688, -0.081312]], dtype=np.float32).T |
|
self.shift = nn.Parameter(torch.tensor([0., 128., 128.])) |
|
|
|
self.matrix = nn.Parameter(torch.from_numpy(matrix)) |
|
|
|
def forward(self, image): |
|
image = image.permute(0, 2, 3, 1) |
|
result = torch.tensordot(image, self.matrix, dims=1) + self.shift |
|
|
|
result.view(image.shape) |
|
return result |
|
|
|
|
|
|
|
class chroma_subsampling(nn.Module): |
|
""" Chroma subsampling on CbCv channels |
|
Input: |
|
image(tensor): batch x height x width x 3 |
|
Output: |
|
y(tensor): batch x height x width |
|
cb(tensor): batch x height/2 x width/2 |
|
cr(tensor): batch x height/2 x width/2 |
|
""" |
|
def __init__(self): |
|
super(chroma_subsampling, self).__init__() |
|
|
|
def forward(self, image): |
|
image_2 = image.permute(0, 3, 1, 2).clone() |
|
avg_pool = nn.AvgPool2d(kernel_size=2, stride=(2, 2), |
|
count_include_pad=False) |
|
cb = avg_pool(image_2[:, 1, :, :].unsqueeze(1)) |
|
cr = avg_pool(image_2[:, 2, :, :].unsqueeze(1)) |
|
cb = cb.permute(0, 2, 3, 1) |
|
cr = cr.permute(0, 2, 3, 1) |
|
return image[:, :, :, 0], cb.squeeze(3), cr.squeeze(3) |
|
|
|
|
|
class block_splitting(nn.Module): |
|
""" Splitting image into patches |
|
Input: |
|
image(tensor): batch x height x width |
|
Output: |
|
patch(tensor): batch x h*w/64 x h x w |
|
""" |
|
def __init__(self): |
|
super(block_splitting, self).__init__() |
|
self.k = 8 |
|
|
|
def forward(self, image): |
|
height, width = image.shape[1:3] |
|
|
|
batch_size = image.shape[0] |
|
|
|
image_reshaped = image.view(batch_size, height // self.k, self.k, -1, self.k) |
|
image_transposed = image_reshaped.permute(0, 1, 3, 2, 4) |
|
return image_transposed.contiguous().view(batch_size, -1, self.k, self.k) |
|
|
|
|
|
class dct_8x8(nn.Module): |
|
""" Discrete Cosine Transformation |
|
Input: |
|
image(tensor): batch x height x width |
|
Output: |
|
dcp(tensor): batch x height x width |
|
""" |
|
def __init__(self): |
|
super(dct_8x8, self).__init__() |
|
tensor = np.zeros((8, 8, 8, 8), dtype=np.float32) |
|
for x, y, u, v in itertools.product(range(8), repeat=4): |
|
tensor[x, y, u, v] = np.cos((2 * x + 1) * u * np.pi / 16) * np.cos( |
|
(2 * y + 1) * v * np.pi / 16) |
|
alpha = np.array([1. / np.sqrt(2)] + [1] * 7) |
|
|
|
self.tensor = nn.Parameter(torch.from_numpy(tensor).float()) |
|
self.scale = nn.Parameter(torch.from_numpy(np.outer(alpha, alpha) * 0.25).float() ) |
|
|
|
def forward(self, image): |
|
image = image - 128 |
|
result = self.scale * torch.tensordot(image, self.tensor, dims=2) |
|
result.view(image.shape) |
|
return result |
|
|
|
|
|
class y_quantize(nn.Module): |
|
""" JPEG Quantization for Y channel |
|
Input: |
|
image(tensor): batch x height x width |
|
rounding(function): rounding function to use |
|
factor(float): Degree of compression |
|
Output: |
|
image(tensor): batch x height x width |
|
""" |
|
def __init__(self, rounding, factor=1): |
|
super(y_quantize, self).__init__() |
|
self.rounding = rounding |
|
self.factor = factor |
|
self.y_table = JPEG_utils.y_table |
|
|
|
def forward(self, image): |
|
image = image.float() / (self.y_table * self.factor) |
|
image = self.rounding(image) |
|
return image |
|
|
|
|
|
class c_quantize(nn.Module): |
|
""" JPEG Quantization for CrCb channels |
|
Input: |
|
image(tensor): batch x height x width |
|
rounding(function): rounding function to use |
|
factor(float): Degree of compression |
|
Output: |
|
image(tensor): batch x height x width |
|
""" |
|
def __init__(self, rounding, factor=1): |
|
super(c_quantize, self).__init__() |
|
self.rounding = rounding |
|
self.factor = factor |
|
self.c_table = JPEG_utils.c_table |
|
|
|
def forward(self, image): |
|
image = image.float() / (self.c_table * self.factor) |
|
image = self.rounding(image) |
|
return image |
|
|
|
|
|
class compress_jpeg(nn.Module): |
|
""" Full JPEG compression algortihm |
|
Input: |
|
imgs(tensor): batch x 3 x height x width |
|
rounding(function): rounding function to use |
|
factor(float): Compression factor |
|
Ouput: |
|
compressed(dict(tensor)): batch x h*w/64 x 8 x 8 |
|
""" |
|
def __init__(self, rounding=torch.round, factor=1): |
|
super(compress_jpeg, self).__init__() |
|
self.l1 = nn.Sequential( |
|
rgb_to_ycbcr_jpeg(), |
|
|
|
chroma_subsampling() |
|
) |
|
self.l2 = nn.Sequential( |
|
block_splitting(), |
|
dct_8x8() |
|
) |
|
self.c_quantize = c_quantize(rounding=rounding, factor=factor) |
|
self.y_quantize = y_quantize(rounding=rounding, factor=factor) |
|
|
|
def forward(self, image): |
|
y, cb, cr = self.l1(image*255) |
|
|
|
|
|
components = {'y': y, 'cb': cb, 'cr': cr} |
|
for k in components.keys(): |
|
comp = self.l2(components[k]) |
|
|
|
if k in ('cb', 'cr'): |
|
comp = self.c_quantize(comp) |
|
else: |
|
comp = self.y_quantize(comp) |
|
|
|
components[k] = comp |
|
|
|
return components['y'], components['cb'], components['cr'] |