|
import nltk |
|
nltk.download('punkt_tab') |
|
|
|
import os |
|
from dotenv import load_dotenv |
|
import asyncio |
|
from fastapi import FastAPI, Request, WebSocket, WebSocketDisconnect |
|
from fastapi.responses import HTMLResponse |
|
from fastapi.templating import Jinja2Templates |
|
from fastapi.middleware.cors import CORSMiddleware |
|
from langchain.chains import create_history_aware_retriever, create_retrieval_chain |
|
from langchain.chains.combine_documents import create_stuff_documents_chain |
|
from langchain_community.chat_message_histories import ChatMessageHistory |
|
from langchain.schema import BaseChatMessageHistory |
|
from langchain.prompts.chat import ChatPromptTemplate, MessagesPlaceholder |
|
from langchain_core.runnables import RunnableWithMessageHistory |
|
from pinecone import Pinecone |
|
from pinecone_text.sparse import BM25Encoder |
|
from langchain_community.embeddings import OpenAIEmbeddings |
|
from langchain_community.retrievers import PineconeHybridSearchRetriever |
|
from langchain.retrievers import ContextualCompressionRetriever |
|
from langchain_community.chat_models import ChatOpenAI |
|
from langchain.retrievers.document_compressors import CrossEncoderReranker |
|
from langchain_community.cross_encoders import HuggingFaceCrossEncoder |
|
from langchain.prompts import PromptTemplate |
|
import re |
|
from langchain_huggingface import HuggingFaceEmbeddings |
|
|
|
|
|
load_dotenv(".env") |
|
USER_AGENT = os.getenv("USER_AGENT") |
|
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY") |
|
SECRET_KEY = os.getenv("SECRET_KEY") |
|
PINECONE_API_KEY = os.getenv("PINECONE_API_KEY") |
|
SESSION_ID_DEFAULT = "abc123" |
|
|
|
|
|
os.environ['USER_AGENT'] = USER_AGENT |
|
os.environ["OPENAI_API_KEY"] = OPENAI_API_KEY |
|
os.environ["TOKENIZERS_PARALLELISM"] = 'true' |
|
|
|
|
|
app = FastAPI() |
|
origins = ["*"] |
|
|
|
app.add_middleware( |
|
CORSMiddleware, |
|
allow_origins=origins, |
|
allow_credentials=True, |
|
allow_methods=["*"], |
|
allow_headers=["*"], |
|
) |
|
|
|
templates = Jinja2Templates(directory="templates") |
|
|
|
|
|
def initialize_pinecone(index_name: str): |
|
try: |
|
pc = Pinecone(api_key=PINECONE_API_KEY) |
|
return pc.Index(index_name) |
|
except Exception as e: |
|
print(f"Error initializing Pinecone: {e}") |
|
raise |
|
|
|
|
|
|
|
|
|
|
|
|
|
pinecone_index = initialize_pinecone("updated-mbzuai-policies") |
|
bm25 = BM25Encoder().load("./mbzuai-policies.json") |
|
|
|
|
|
|
|
|
|
|
|
embed_model = HuggingFaceEmbeddings(model_name="jinaai/jina-embeddings-v3", model_kwargs={"trust_remote_code":True}) |
|
|
|
retriever = PineconeHybridSearchRetriever( |
|
embeddings=embed_model, |
|
sparse_encoder=bm25, |
|
index=pinecone_index, |
|
top_k=20, |
|
alpha=0.5, |
|
) |
|
|
|
|
|
llm = ChatOpenAI(temperature=0, model_name="gpt-4o-mini", max_tokens=512) |
|
|
|
|
|
model = HuggingFaceCrossEncoder(model_name="BAAI/bge-reranker-base") |
|
compressor = CrossEncoderReranker(model=model, top_n=10) |
|
|
|
compression_retriever = ContextualCompressionRetriever( |
|
base_compressor=compressor, base_retriever=retriever |
|
) |
|
|
|
|
|
contextualize_q_system_prompt = """Given a chat history and the latest user question \ |
|
which might reference context in the chat history, formulate a standalone question \ |
|
which can be understood without the chat history. Do NOT answer the question, \ |
|
just reformulate it if needed and otherwise return it as is. |
|
""" |
|
contextualize_q_prompt = ChatPromptTemplate.from_messages( |
|
[ |
|
("system", contextualize_q_system_prompt), |
|
MessagesPlaceholder("chat_history"), |
|
("human", "{input}") |
|
] |
|
) |
|
history_aware_retriever = create_history_aware_retriever(llm, compression_retriever, contextualize_q_prompt) |
|
|
|
|
|
qa_system_prompt = """ You are a highly skilled information retrieval assistant. Use the following context to answer questions effectively. |
|
If you don't know the answer, simply state that you don't know. |
|
Your answer should be in {language} language. |
|
|
|
When responding to queries, follow these guidelines: |
|
|
|
1. Provide Clear Answers: |
|
- Based on the language of the question, you have to answer in that language. E.g., if the question is in English, then answer in English; if the question is in Arabic, you should answer in Arabic. |
|
- Ensure the response directly addresses the query with accurate and relevant information. |
|
- Do not give long answers. Provide detailed but concise responses. |
|
|
|
2. Formatting for Readability: |
|
- Provide the entire response in proper markdown format. |
|
- Use structured Markdown elements such as headings, subheadings, lists, tables, and links. |
|
- Use emphasis on headings, important texts, and phrases. |
|
|
|
3. Proper Citations: |
|
- ALWAYS USE INLINE CITATIONS with embedded source URLs where users can verify information or explore further. |
|
- The inline citations should be in the format [[1]], [[2]], etc., in the response with links to reference sources. |
|
- AT THE END OF THE RESPONSE, LIST OUT THE CITATIONS WITH THEIR SOURCES. If there are multiple citations with same source url then only mention that single source url for all of those. |
|
|
|
FOLLOW ALL THE GIVEN INSTRUCTIONS, FAILURE TO DO SO WILL RESULT IN TERMINATION OF THE CHAT. |
|
{context} |
|
""" |
|
qa_prompt = ChatPromptTemplate.from_messages( |
|
[ |
|
("system", qa_system_prompt), |
|
MessagesPlaceholder("chat_history"), |
|
("human", "{input}") |
|
] |
|
) |
|
|
|
document_prompt = PromptTemplate(input_variables=["page_content", "source"], template="{page_content} \n\n Source: {source}") |
|
question_answer_chain = create_stuff_documents_chain(llm, qa_prompt, document_prompt=document_prompt) |
|
|
|
|
|
rag_chain = create_retrieval_chain(history_aware_retriever, question_answer_chain) |
|
|
|
|
|
store = {} |
|
|
|
def get_session_history(session_id: str) -> BaseChatMessageHistory: |
|
if session_id not in store: |
|
store[session_id] = ChatMessageHistory() |
|
return store[session_id] |
|
|
|
|
|
conversational_rag_chain = RunnableWithMessageHistory( |
|
rag_chain, |
|
get_session_history, |
|
input_messages_key="input", |
|
history_messages_key="chat_history", |
|
language_message_key="language", |
|
output_messages_key="answer", |
|
) |
|
|
|
|
|
@app.websocket("/ws") |
|
async def websocket_endpoint(websocket: WebSocket): |
|
await websocket.accept() |
|
print(f"Client connected: {websocket.client}") |
|
session_id = None |
|
try: |
|
while True: |
|
data = await websocket.receive_json() |
|
question = data.get('question') |
|
language = data.get('language') |
|
if "en" in language: |
|
language = "English" |
|
else: |
|
language = "Arabic" |
|
session_id = data.get('session_id', SESSION_ID_DEFAULT) |
|
|
|
try: |
|
|
|
async def stream_response(): |
|
complete_response = "" |
|
context = {} |
|
async for chunk in conversational_rag_chain.astream( |
|
{"input": question, 'language': language}, |
|
config={"configurable": {"session_id": session_id}} |
|
): |
|
if "context" in chunk: |
|
context = chunk['context'] |
|
|
|
if "answer" in chunk: |
|
complete_response += chunk['answer'] |
|
await websocket.send_json({'response': chunk['answer']}) |
|
|
|
if context: |
|
citations = re.findall(r'\[(\d+)\]', complete_response) |
|
citation_numbers = list(map(int, citations)) |
|
sources = dict() |
|
for index, doc in enumerate(context): |
|
if (index+1) in citation_numbers: |
|
sources[f"[{index+1}]"] = doc.metadata["source"] |
|
await websocket.send_json({'sources': sources}) |
|
|
|
await stream_response() |
|
except Exception as e: |
|
print(f"Error during message handling: {e}") |
|
await websocket.send_json({'response': "Something went wrong, Please try again." + str(e)}) |
|
except WebSocketDisconnect: |
|
print(f"Client disconnected: {websocket.client}") |
|
if session_id: |
|
store.pop(session_id, None) |
|
|
|
|
|
@app.get("/", response_class=HTMLResponse) |
|
async def read_index(request: Request): |
|
return templates.TemplateResponse("chat.html", {"request": request}) |