File size: 3,577 Bytes
b094b4a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
'''
 * Copyright (c) 2023 Salesforce, Inc.
 * All rights reserved.
 * SPDX-License-Identifier: Apache License 2.0
 * For full license text, see LICENSE.txt file in the repo root or http://www.apache.org/licenses/
 * By Can Qin
 * Modified from ControlNet repo: https://github.com/lllyasviel/ControlNet
 * Copyright (c) 2023 Lvmin Zhang and Maneesh Agrawala
'''

import os
import torch
from omegaconf import OmegaConf
import importlib
import numpy as np


from inspect import isfunction
from PIL import Image, ImageDraw, ImageFont


def log_txt_as_img(wh, xc, size=10):
    # wh a tuple of (width, height)
    # xc a list of captions to plot
    b = len(xc)
    txts = list()
    for bi in range(b):
        txt = Image.new("RGB", wh, color="white")
        draw = ImageDraw.Draw(txt)
        font = ImageFont.truetype('font/DejaVuSans.ttf', size=size)
        nc = int(40 * (wh[0] / 256))
        lines = "\n".join(xc[bi][start:start + nc] for start in range(0, len(xc[bi]), nc))

        try:
            draw.text((0, 0), lines, fill="black", font=font)
        except UnicodeEncodeError:
            print("Cant encode string for logging. Skipping.")

        txt = np.array(txt).transpose(2, 0, 1) / 127.5 - 1.0
        txts.append(txt)
    txts = np.stack(txts)
    txts = torch.tensor(txts)
    return txts


def ismap(x):
    if not isinstance(x, torch.Tensor):
        return False
    return (len(x.shape) == 4) and (x.shape[1] > 3)


def isimage(x):
    if not isinstance(x,torch.Tensor):
        return False
    return (len(x.shape) == 4) and (x.shape[1] == 3 or x.shape[1] == 1)


def exists(x):
    return x is not None


def default(val, d):
    if exists(val):
        return val
    return d() if isfunction(d) else d


def mean_flat(tensor):
    """
    https://github.com/openai/guided-diffusion/blob/27c20a8fab9cb472df5d6bdd6c8d11c8f430b924/guided_diffusion/nn.py#L86
    Take the mean over all non-batch dimensions.
    """
    return tensor.mean(dim=list(range(1, len(tensor.shape))))

def count_params(model, verbose=False):
    total_params = sum(p.numel() for p in model.parameters())
    if verbose:
        print(f"{model.__class__.__name__} has {total_params*1.e-6:.2f} M params.")
    return total_params


def get_state_dict(d):
    return d.get('state_dict', d)


def load_state_dict(ckpt_path, location='cpu'):
    _, extension = os.path.splitext(ckpt_path)
    if extension.lower() == ".safetensors":
        import safetensors.torch
        state_dict = safetensors.torch.load_file(ckpt_path, device=location)
    else:
        state_dict = get_state_dict(torch.load(ckpt_path, map_location=torch.device(location)))
    state_dict = get_state_dict(state_dict)
    print(f'Loaded state_dict from [{ckpt_path}]')
    return state_dict

def get_obj_from_str(string, reload=False):
    module, cls = string.rsplit(".", 1)
    if reload:
        module_imp = importlib.import_module(module)
        importlib.reload(module_imp)
    return getattr(importlib.import_module(module, package=None), cls)

def instantiate_from_config(config):
    if not "target" in config:
        if config == '__is_first_stage__':
            return None
        elif config == "__is_unconditional__":
            return None
        raise KeyError("Expected key `target` to instantiate.")
    return get_obj_from_str(config["target"])(**config.get("params", dict()))

def create_model(config_path):
    config = OmegaConf.load(config_path)
    model = instantiate_from_config(config.model).cpu()
    print(f'Loaded model config from [{config_path}]')
    return model