Spaces:
Running
Running
File size: 2,343 Bytes
ae38eb4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 |
import os
import gradio as gr
import asyncio
from langchain_core.prompts import PromptTemplate
from langchain_community.document_loaders import PyPDFLoader
from langchain.chains.question_answering import load_qa_chain
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load Mistral model
model_path = "nvidia/Mistral-NeMo-Minitron-8B-Base"
tokenizer = AutoTokenizer.from_pretrained(model_path)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
dtype = torch.bfloat16
model = AutoModelForCausalLM.from_pretrained(model_path, torch_dtype=dtype, device_map=device)
async def initialize(file_path, question):
prompt_template = """Answer the question as precise as possible using the provided context. If the answer is not contained in the context, say "answer not available in context" \n\n Context: \n {context}?\n Question: \n {question} \n Answer: """
prompt = PromptTemplate(template=prompt_template, input_variables=["context", "question"])
if os.path.exists(file_path):
pdf_loader = PyPDFLoader(file_path)
pages = pdf_loader.load_and_split()
context = "\n".join(str(page.page_content) for page in pages[:30])
# Prepare input for Mistral model
input_text = prompt.format(context=context, question=question)
inputs = tokenizer.encode(input_text, return_tensors='pt').to(device)
# Generate the output
with torch.no_grad():
outputs = model.generate(inputs, max_length=500) # Adjust max_length as needed
# Decode and return the output
answer = tokenizer.decode(outputs[0], skip_special_tokens=True)
return answer
else:
return "Error: Unable to process the document. Please ensure the PDF file is valid."
# Define Gradio Interface
input_file = gr.File(label="Upload PDF File")
input_question = gr.Textbox(label="Ask about the document")
output_text = gr.Textbox(label="Answer - Mistral Model")
async def pdf_qa(file, question):
answer = await initialize(file.name, question)
return answer
# Create Gradio Interface
gr.Interface(
fn=pdf_qa,
inputs=[input_file, input_question],
outputs=output_text,
title="RAG Knowledge Retrieval using Mistral Model",
description="Upload a PDF file and ask questions about the content."
).launch() |