Spaces:
Sleeping
Sleeping
import os | |
import gradio as gr | |
from langchain_core.prompts import PromptTemplate | |
from langchain_community.document_loaders import PyPDFLoader | |
from langchain_google_genai import ChatGoogleGenerativeAI | |
import google.generativeai as genai | |
from langchain.chains.question_answering import load_qa_chain | |
import torch | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
from transformers import BlipProcessor, BlipForConditionalGeneration | |
from PIL import Image | |
# Configure Gemini API | |
genai.configure(api_key=os.getenv("GOOGLE_API_KEY")) | |
# Load Mistral model | |
model_path = "nvidia/Mistral-NeMo-Minitron-8B-Base" | |
mistral_tokenizer = AutoTokenizer.from_pretrained(model_path) | |
device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
dtype = torch.bfloat16 | |
mistral_model = AutoModelForCausalLM.from_pretrained(model_path, torch_dtype=dtype, device_map=device) | |
# Load BLIP model for image processing | |
blip_processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base") | |
blip_model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base").to(device) | |
def process_image(image): | |
# Convert PIL Image to tensor | |
inputs = blip_processor(images=image, return_tensors="pt").to(device) | |
# Generate caption from image | |
caption_ids = blip_model.generate(**inputs) | |
caption = blip_processor.decode(caption_ids[0], skip_special_tokens=True) | |
return caption | |
def initialize(file_path, image, question): | |
try: | |
model = ChatGoogleGenerativeAI(model="gemini-pro", temperature=0.3) | |
prompt_template = """Answer the question as precise as possible using the provided context. If the answer is | |
not contained in the context, say "answer not available in context" \n\n | |
Context: \n {context}?\n | |
Question: \n {question} \n | |
Answer: | |
""" | |
prompt = PromptTemplate(template=prompt_template, input_variables=["context", "question"]) | |
context = "" | |
if file_path and os.path.exists(file_path): | |
pdf_loader = PyPDFLoader(file_path) | |
pages = pdf_loader.load_and_split() | |
context += "\n".join(str(page.page_content) for page in pages[:30]) | |
if image: | |
image_context = process_image(image) | |
context += f"\nImage Context: {image_context}" | |
if context: | |
stuff_chain = load_qa_chain(model, chain_type="stuff", prompt=prompt) | |
stuff_answer = stuff_chain({"input_documents": [], "question": question, "context": context}, return_only_outputs=True) | |
gemini_answer = stuff_answer['output_text'] | |
# Use Mistral model for additional text generation | |
mistral_prompt = f"Based on this answer: {gemini_answer}\nGenerate a follow-up question:" | |
mistral_inputs = mistral_tokenizer.encode(mistral_prompt, return_tensors='pt').to(device) | |
with torch.no_grad(): | |
mistral_outputs = mistral_model.generate(mistral_inputs, max_length=50) | |
mistral_output = mistral_tokenizer.decode(mistral_outputs[0], skip_special_tokens=True) | |
combined_output = f"Gemini Answer: {gemini_answer}\n\nMistral Follow-up: {mistral_output}" | |
return combined_output | |
else: | |
return "Error: No valid context provided. Please upload a valid PDF or image." | |
except Exception as e: | |
return f"An error occurred: {str(e)}" | |
# Define Gradio Interface | |
input_file = gr.File(label="Upload PDF File") | |
input_image = gr.Image(type="pil", label="Upload Image") | |
input_question = gr.Textbox(label="Ask about the document") | |
output_text = gr.Textbox(label="Answer - Combined Gemini and Mistral") | |
def multimodal_qa(file, image, question): | |
if file is None and image is None: | |
return "Please upload a PDF file or an image first." | |
file_path = file.name if file else None | |
return initialize(file_path, image, question) | |
# Create Gradio Interface | |
gr.Interface( | |
fn=multimodal_qa, | |
inputs=[input_file, input_image, input_question], | |
outputs=output_text, | |
title="Multi-modal RAG with Gemini API and Mistral Model", | |
description="Upload a PDF or an image and ask questions about the content." | |
).launch() | |