Spaces:
Sleeping
Sleeping
import gradio as gr | |
import tensorflow as tf | |
from tensorflow.keras.utils import CustomObjectScope | |
from tensorflow.keras.layers.experimental.preprocessing import RandomHeight | |
with CustomObjectScope({'RandomHeight': RandomHeight}): | |
model_0 = tf.keras.models.load_model('/content/drive/MyDrive/bestmodel_porno_final_meilleure100%2.0.h5') | |
def classify_image(inp): | |
inp = inp.reshape((-1, 224, 224, 3)) | |
prediction = model_0.predict(inp) | |
output = "" | |
if prediction[0][prediction.argmax()] < 0.84: | |
output = "bonne image" | |
elif prediction.argmax() == 0: | |
output = "Rifle violence" | |
elif prediction.argmax() == 1: | |
output = "guns violence" | |
elif prediction.argmax() == 2: | |
output = "knife violence" | |
elif prediction.argmax() == 3: | |
output = "image porno" | |
elif prediction.argmax() == 4: | |
output = "personne habillée" | |
else: | |
output = "tank violence" | |
return output | |
image = gr.Image(height=224, width=224) | |
gr.Interface( | |
fn=classify_image, inputs=image, outputs="text",live=True, theme="dark-peach",title="API de détection des images violentes", | |
).launch() | |