File size: 8,164 Bytes
4fc75fa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
import numpy as np
import torch
import random


# Reworked so this matches gluPerspective / glm::perspective, using fovy
def perspective(fovx=0.7854, aspect=1.0, n=0.1, f=1000.0, device=None):
    # y = np.tan(fovy / 2)
    x = np.tan(fovx / 2)
    return torch.tensor([[1/x,         0,            0,              0],
                         [  0, -aspect/x,            0,              0],
                         [  0,         0, -(f+n)/(f-n), -(2*f*n)/(f-n)],
                         [  0,         0,           -1,              0]], dtype=torch.float32, device=device)


def translate(x, y, z, device=None):
    return torch.tensor([[1, 0, 0, x],
                         [0, 1, 0, y],
                         [0, 0, 1, z],
                         [0, 0, 0, 1]], dtype=torch.float32, device=device)


def rotate_x(a, device=None):
    s, c = np.sin(a), np.cos(a)
    return torch.tensor([[1, 0,  0, 0],
                         [0, c, -s, 0],
                         [0, s,  c, 0],
                         [0, 0,  0, 1]], dtype=torch.float32, device=device)


def rotate_y(a, device=None):
    s, c = np.sin(a), np.cos(a)
    return torch.tensor([[ c, 0, s, 0],
                         [ 0, 1, 0, 0],
                         [-s, 0, c, 0],
                         [ 0, 0, 0, 1]], dtype=torch.float32, device=device)


def rotate_z(a, device=None):
    s, c = np.sin(a), np.cos(a)
    return torch.tensor([[c, -s, 0, 0],
                         [s,  c, 0, 0],
                         [0,  0, 1, 0],
                         [0,  0, 0, 1]], dtype=torch.float32, device=device)

@torch.no_grad()
def batch_random_rotation_translation(b, t, device=None):
    m = np.random.normal(size=[b, 3, 3])
    m[:, 1] = np.cross(m[:, 0], m[:, 2])
    m[:, 2] = np.cross(m[:, 0], m[:, 1])
    m = m / np.linalg.norm(m, axis=2, keepdims=True)
    m = np.pad(m, [[0, 0], [0, 1], [0, 1]], mode='constant')
    m[:, 3, 3] = 1.0
    m[:, :3, 3] = np.random.uniform(-t, t, size=[b, 3])
    return torch.tensor(m, dtype=torch.float32, device=device)

@torch.no_grad()
def random_rotation_translation(t, device=None):
    m = np.random.normal(size=[3, 3])
    m[1] = np.cross(m[0], m[2])
    m[2] = np.cross(m[0], m[1])
    m = m / np.linalg.norm(m, axis=1, keepdims=True)
    m = np.pad(m, [[0, 1], [0, 1]], mode='constant')
    m[3, 3] = 1.0
    m[:3, 3] = np.random.uniform(-t, t, size=[3])
    return torch.tensor(m, dtype=torch.float32, device=device)


@torch.no_grad()
def random_rotation(device=None):
    m = np.random.normal(size=[3, 3])
    m[1] = np.cross(m[0], m[2])
    m[2] = np.cross(m[0], m[1])
    m = m / np.linalg.norm(m, axis=1, keepdims=True)
    m = np.pad(m, [[0, 1], [0, 1]], mode='constant')
    m[3, 3] = 1.0
    m[:3, 3] = np.array([0,0,0]).astype(np.float32)
    return torch.tensor(m, dtype=torch.float32, device=device)


def dot(x: torch.Tensor, y: torch.Tensor) -> torch.Tensor:
    return torch.sum(x*y, -1, keepdim=True)


def length(x: torch.Tensor, eps: float =1e-20) -> torch.Tensor:
    return torch.sqrt(torch.clamp(dot(x,x), min=eps)) # Clamp to avoid nan gradients because grad(sqrt(0)) = NaN


def safe_normalize(x: torch.Tensor, eps: float =1e-20) -> torch.Tensor:
    return x / length(x, eps)


def lr_schedule(iter, warmup_iter, scheduler_decay):
    if iter < warmup_iter:
        return iter / warmup_iter
    return max(0.0, 10 ** (
            -(iter - warmup_iter) * scheduler_decay)) 


def trans_depth(depth):
    depth = depth[0].detach().cpu().numpy()
    valid = depth > 0
    depth[valid] -= depth[valid].min()
    depth[valid] = ((depth[valid] / depth[valid].max()) * 255)
    return depth.astype('uint8')


def nan_to_num(input, nan=0.0, posinf=None, neginf=None, *, out=None):
    assert isinstance(input, torch.Tensor)
    if posinf is None:
        posinf = torch.finfo(input.dtype).max
    if neginf is None:
        neginf = torch.finfo(input.dtype).min
    assert nan == 0
    return torch.clamp(input.unsqueeze(0).nansum(0), min=neginf, max=posinf, out=out)


def load_item(filepath):
    with open(filepath, 'r') as f:
        items = [name.strip() for name in f.readlines()]
    return set(items)

def load_prompt(filepath):
    uuid2prompt = {}
    with open(filepath, 'r') as f:
        for line in f.readlines():
            list_line = line.split(',')
            uuid2prompt[list_line[0]] = ','.join(list_line[1:]).strip()
    return uuid2prompt

def resize_and_center_image(image_tensor, scale=0.95, c = 0, shift = 0, rgb=False, aug_shift = 0):
    if scale == 1:
        return image_tensor
    B, C, H, W = image_tensor.shape
    new_H, new_W = int(H * scale), int(W * scale)
    resized_image = torch.nn.functional.interpolate(image_tensor, size=(new_H, new_W), mode='bilinear', align_corners=False).squeeze(0)
    background = torch.zeros_like(image_tensor) + c
    start_y, start_x = (H - new_H) // 2, (W - new_W) // 2
    if shift == 0:
        background[:, :, start_y:start_y + new_H, start_x:start_x + new_W] = resized_image
    else:
        for i in range(B):
            randx = random.randint(-shift, shift)
            randy = random.randint(-shift, shift)   
            if rgb == True:
                if i == 0 or i==2 or i==4:
                    randx = 0
                    randy = 0 
            background[i, :, start_y+randy:start_y + new_H+randy, start_x+randx:start_x + new_W+randx] = resized_image[i]
    if aug_shift == 0:
        return background  
    for i in range(B):
        for j in range(C):
            background[i, j, :, :] += (random.random() - 0.5)*2 * aug_shift / 255
    return background 
                               
def get_tri(triview_color, dim = 1, blender=True, c = 0, scale=0.95, shift = 0, fix = False, rgb=False, aug_shift = 0):
    # triview_color: [6,C,H,W]
    # rgb is useful when shift is not 0
    triview_color = resize_and_center_image(triview_color, scale=scale, c = c, shift=shift,rgb=rgb, aug_shift = aug_shift)
    if blender is False:
        triview_color0 = torch.rot90(triview_color[0],k=2,dims=[1,2])
        triview_color1 = torch.rot90(triview_color[4],k=1,dims=[1,2]).flip(2).flip(1)
        triview_color2 = torch.rot90(triview_color[5],k=1,dims=[1,2]).flip(2)
        triview_color3 = torch.rot90(triview_color[3],k=2,dims=[1,2]).flip(2)
        triview_color4 = torch.rot90(triview_color[1],k=3,dims=[1,2]).flip(1)
        triview_color5 = torch.rot90(triview_color[2],k=3,dims=[1,2]).flip(1).flip(2)
    else:
        triview_color0 = torch.rot90(triview_color[2],k=2,dims=[1,2])
        triview_color1 = torch.rot90(triview_color[4],k=0,dims=[1,2]).flip(2).flip(1)
        triview_color2 = torch.rot90(torch.rot90(triview_color[0],k=3,dims=[1,2]).flip(2), k=2,dims=[1,2])
        triview_color3 = torch.rot90(torch.rot90(triview_color[5],k=2,dims=[1,2]).flip(2), k=2,dims=[1,2])
        triview_color4 = torch.rot90(triview_color[1],k=2,dims=[1,2]).flip(1).flip(1).flip(2)
        triview_color5 = torch.rot90(triview_color[3],k=1,dims=[1,2]).flip(1).flip(2)
        if fix == True:
            triview_color0[1] = triview_color0[1] * 0
            triview_color0[2] = triview_color0[2] * 0
            triview_color3[1] = triview_color3[1] * 0
            triview_color3[2] = triview_color3[2] * 0

            triview_color1[0] = triview_color1[0] * 0
            triview_color1[1] = triview_color1[1] * 0
            triview_color4[0] = triview_color4[0] * 0
            triview_color4[1] = triview_color4[1] * 0

            triview_color2[0] = triview_color2[0] * 0
            triview_color2[2] = triview_color2[2] * 0
            triview_color5[0] = triview_color5[0] * 0
            triview_color5[2] = triview_color5[2] * 0
    color_tensor1_gt = torch.cat((triview_color0, triview_color1, triview_color2), dim=2)
    color_tensor2_gt = torch.cat((triview_color3, triview_color4, triview_color5), dim=2)
    color_tensor_gt = torch.cat((color_tensor1_gt, color_tensor2_gt), dim = dim)
    return color_tensor_gt