Upload 11 files
Browse files- apps/third_party/CRM/util/__init__.py +0 -0
- apps/third_party/CRM/util/__pycache__/__init__.cpython-38.pyc +0 -0
- apps/third_party/CRM/util/__pycache__/flexicubes.cpython-38.pyc +0 -0
- apps/third_party/CRM/util/__pycache__/flexicubes_geometry.cpython-38.pyc +0 -0
- apps/third_party/CRM/util/__pycache__/renderer.cpython-38.pyc +0 -0
- apps/third_party/CRM/util/__pycache__/tables.cpython-38.pyc +0 -0
- apps/third_party/CRM/util/flexicubes.py +579 -0
- apps/third_party/CRM/util/flexicubes_geometry.py +116 -0
- apps/third_party/CRM/util/renderer.py +49 -0
- apps/third_party/CRM/util/tables.py +791 -0
- apps/third_party/CRM/util/utils.py +194 -0
apps/third_party/CRM/util/__init__.py
ADDED
File without changes
|
apps/third_party/CRM/util/__pycache__/__init__.cpython-38.pyc
ADDED
Binary file (165 Bytes). View file
|
|
apps/third_party/CRM/util/__pycache__/flexicubes.cpython-38.pyc
ADDED
Binary file (22.3 kB). View file
|
|
apps/third_party/CRM/util/__pycache__/flexicubes_geometry.cpython-38.pyc
ADDED
Binary file (3.74 kB). View file
|
|
apps/third_party/CRM/util/__pycache__/renderer.cpython-38.pyc
ADDED
Binary file (1.66 kB). View file
|
|
apps/third_party/CRM/util/__pycache__/tables.cpython-38.pyc
ADDED
Binary file (26.6 kB). View file
|
|
apps/third_party/CRM/util/flexicubes.py
ADDED
@@ -0,0 +1,579 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
2 |
+
#
|
3 |
+
# NVIDIA CORPORATION & AFFILIATES and its licensors retain all intellectual property
|
4 |
+
# and proprietary rights in and to this software, related documentation
|
5 |
+
# and any modifications thereto. Any use, reproduction, disclosure or
|
6 |
+
# distribution of this software and related documentation without an express
|
7 |
+
# license agreement from NVIDIA CORPORATION & AFFILIATES is strictly prohibited.
|
8 |
+
import torch
|
9 |
+
from util.tables import *
|
10 |
+
|
11 |
+
__all__ = [
|
12 |
+
'FlexiCubes'
|
13 |
+
]
|
14 |
+
|
15 |
+
|
16 |
+
class FlexiCubes:
|
17 |
+
"""
|
18 |
+
This class implements the FlexiCubes method for extracting meshes from scalar fields.
|
19 |
+
It maintains a series of lookup tables and indices to support the mesh extraction process.
|
20 |
+
FlexiCubes, a differentiable variant of the Dual Marching Cubes (DMC) scheme, enhances
|
21 |
+
the geometric fidelity and mesh quality of reconstructed meshes by dynamically adjusting
|
22 |
+
the surface representation through gradient-based optimization.
|
23 |
+
|
24 |
+
During instantiation, the class loads DMC tables from a file and transforms them into
|
25 |
+
PyTorch tensors on the specified device.
|
26 |
+
|
27 |
+
Attributes:
|
28 |
+
device (str): Specifies the computational device (default is "cuda").
|
29 |
+
dmc_table (torch.Tensor): Dual Marching Cubes (DMC) table that encodes the edges
|
30 |
+
associated with each dual vertex in 256 Marching Cubes (MC) configurations.
|
31 |
+
num_vd_table (torch.Tensor): Table holding the number of dual vertices in each of
|
32 |
+
the 256 MC configurations.
|
33 |
+
check_table (torch.Tensor): Table resolving ambiguity in cases C16 and C19
|
34 |
+
of the DMC configurations.
|
35 |
+
tet_table (torch.Tensor): Lookup table used in tetrahedralizing the isosurface.
|
36 |
+
quad_split_1 (torch.Tensor): Indices for splitting a quad into two triangles
|
37 |
+
along one diagonal.
|
38 |
+
quad_split_2 (torch.Tensor): Alternative indices for splitting a quad into
|
39 |
+
two triangles along the other diagonal.
|
40 |
+
quad_split_train (torch.Tensor): Indices for splitting a quad into four triangles
|
41 |
+
during training by connecting all edges to their midpoints.
|
42 |
+
cube_corners (torch.Tensor): Defines the positions of a standard unit cube's
|
43 |
+
eight corners in 3D space, ordered starting from the origin (0,0,0),
|
44 |
+
moving along the x-axis, then y-axis, and finally z-axis.
|
45 |
+
Used as a blueprint for generating a voxel grid.
|
46 |
+
cube_corners_idx (torch.Tensor): Cube corners indexed as powers of 2, used
|
47 |
+
to retrieve the case id.
|
48 |
+
cube_edges (torch.Tensor): Edge connections in a cube, listed in pairs.
|
49 |
+
Used to retrieve edge vertices in DMC.
|
50 |
+
edge_dir_table (torch.Tensor): A mapping tensor that associates edge indices with
|
51 |
+
their corresponding axis. For instance, edge_dir_table[0] = 0 indicates that the
|
52 |
+
first edge is oriented along the x-axis.
|
53 |
+
dir_faces_table (torch.Tensor): A tensor that maps the corresponding axis of shared edges
|
54 |
+
across four adjacent cubes to the shared faces of these cubes. For instance,
|
55 |
+
dir_faces_table[0] = [5, 4] implies that for four cubes sharing an edge along
|
56 |
+
the x-axis, the first and second cubes share faces indexed as 5 and 4, respectively.
|
57 |
+
This tensor is only utilized during isosurface tetrahedralization.
|
58 |
+
adj_pairs (torch.Tensor):
|
59 |
+
A tensor containing index pairs that correspond to neighboring cubes that share the same edge.
|
60 |
+
qef_reg_scale (float):
|
61 |
+
The scaling factor applied to the regularization loss to prevent issues with singularity
|
62 |
+
when solving the QEF. This parameter is only used when a 'grad_func' is specified.
|
63 |
+
weight_scale (float):
|
64 |
+
The scale of weights in FlexiCubes. Should be between 0 and 1.
|
65 |
+
"""
|
66 |
+
|
67 |
+
def __init__(self, device="cuda", qef_reg_scale=1e-3, weight_scale=0.99):
|
68 |
+
|
69 |
+
self.device = device
|
70 |
+
self.dmc_table = torch.tensor(dmc_table, dtype=torch.long, device=device, requires_grad=False)
|
71 |
+
self.num_vd_table = torch.tensor(num_vd_table,
|
72 |
+
dtype=torch.long, device=device, requires_grad=False)
|
73 |
+
self.check_table = torch.tensor(
|
74 |
+
check_table,
|
75 |
+
dtype=torch.long, device=device, requires_grad=False)
|
76 |
+
|
77 |
+
self.tet_table = torch.tensor(tet_table, dtype=torch.long, device=device, requires_grad=False)
|
78 |
+
self.quad_split_1 = torch.tensor([0, 1, 2, 0, 2, 3], dtype=torch.long, device=device, requires_grad=False)
|
79 |
+
self.quad_split_2 = torch.tensor([0, 1, 3, 3, 1, 2], dtype=torch.long, device=device, requires_grad=False)
|
80 |
+
self.quad_split_train = torch.tensor(
|
81 |
+
[0, 1, 1, 2, 2, 3, 3, 0], dtype=torch.long, device=device, requires_grad=False)
|
82 |
+
|
83 |
+
self.cube_corners = torch.tensor([[0, 0, 0], [1, 0, 0], [0, 1, 0], [1, 1, 0], [0, 0, 1], [
|
84 |
+
1, 0, 1], [0, 1, 1], [1, 1, 1]], dtype=torch.float, device=device)
|
85 |
+
self.cube_corners_idx = torch.pow(2, torch.arange(8, requires_grad=False))
|
86 |
+
self.cube_edges = torch.tensor([0, 1, 1, 5, 4, 5, 0, 4, 2, 3, 3, 7, 6, 7, 2, 6,
|
87 |
+
2, 0, 3, 1, 7, 5, 6, 4], dtype=torch.long, device=device, requires_grad=False)
|
88 |
+
|
89 |
+
self.edge_dir_table = torch.tensor([0, 2, 0, 2, 0, 2, 0, 2, 1, 1, 1, 1],
|
90 |
+
dtype=torch.long, device=device)
|
91 |
+
self.dir_faces_table = torch.tensor([
|
92 |
+
[[5, 4], [3, 2], [4, 5], [2, 3]],
|
93 |
+
[[5, 4], [1, 0], [4, 5], [0, 1]],
|
94 |
+
[[3, 2], [1, 0], [2, 3], [0, 1]]
|
95 |
+
], dtype=torch.long, device=device)
|
96 |
+
self.adj_pairs = torch.tensor([0, 1, 1, 3, 3, 2, 2, 0], dtype=torch.long, device=device)
|
97 |
+
self.qef_reg_scale = qef_reg_scale
|
98 |
+
self.weight_scale = weight_scale
|
99 |
+
|
100 |
+
def construct_voxel_grid(self, res):
|
101 |
+
"""
|
102 |
+
Generates a voxel grid based on the specified resolution.
|
103 |
+
|
104 |
+
Args:
|
105 |
+
res (int or list[int]): The resolution of the voxel grid. If an integer
|
106 |
+
is provided, it is used for all three dimensions. If a list or tuple
|
107 |
+
of 3 integers is provided, they define the resolution for the x,
|
108 |
+
y, and z dimensions respectively.
|
109 |
+
|
110 |
+
Returns:
|
111 |
+
(torch.Tensor, torch.Tensor): Returns the vertices and the indices of the
|
112 |
+
cube corners (index into vertices) of the constructed voxel grid.
|
113 |
+
The vertices are centered at the origin, with the length of each
|
114 |
+
dimension in the grid being one.
|
115 |
+
"""
|
116 |
+
base_cube_f = torch.arange(8).to(self.device)
|
117 |
+
if isinstance(res, int):
|
118 |
+
res = (res, res, res)
|
119 |
+
voxel_grid_template = torch.ones(res, device=self.device)
|
120 |
+
|
121 |
+
res = torch.tensor([res], dtype=torch.float, device=self.device)
|
122 |
+
coords = torch.nonzero(voxel_grid_template).float() / res # N, 3
|
123 |
+
verts = (self.cube_corners.unsqueeze(0) / res + coords.unsqueeze(1)).reshape(-1, 3)
|
124 |
+
cubes = (base_cube_f.unsqueeze(0) +
|
125 |
+
torch.arange(coords.shape[0], device=self.device).unsqueeze(1) * 8).reshape(-1)
|
126 |
+
|
127 |
+
verts_rounded = torch.round(verts * 10**5) / (10**5)
|
128 |
+
verts_unique, inverse_indices = torch.unique(verts_rounded, dim=0, return_inverse=True)
|
129 |
+
cubes = inverse_indices[cubes.reshape(-1)].reshape(-1, 8)
|
130 |
+
|
131 |
+
return verts_unique - 0.5, cubes
|
132 |
+
|
133 |
+
def __call__(self, x_nx3, s_n, cube_fx8, res, beta_fx12=None, alpha_fx8=None,
|
134 |
+
gamma_f=None, training=False, output_tetmesh=False, grad_func=None):
|
135 |
+
r"""
|
136 |
+
Main function for mesh extraction from scalar field using FlexiCubes. This function converts
|
137 |
+
discrete signed distance fields, encoded on voxel grids and additional per-cube parameters,
|
138 |
+
to triangle or tetrahedral meshes using a differentiable operation as described in
|
139 |
+
`Flexible Isosurface Extraction for Gradient-Based Mesh Optimization`_. FlexiCubes enhances
|
140 |
+
mesh quality and geometric fidelity by adjusting the surface representation based on gradient
|
141 |
+
optimization. The output surface is differentiable with respect to the input vertex positions,
|
142 |
+
scalar field values, and weight parameters.
|
143 |
+
|
144 |
+
If you intend to extract a surface mesh from a fixed Signed Distance Field without the
|
145 |
+
optimization of parameters, it is suggested to provide the "grad_func" which should
|
146 |
+
return the surface gradient at any given 3D position. When grad_func is provided, the process
|
147 |
+
to determine the dual vertex position adapts to solve a Quadratic Error Function (QEF), as
|
148 |
+
described in the `Manifold Dual Contouring`_ paper, and employs an smart splitting strategy.
|
149 |
+
Please note, this approach is non-differentiable.
|
150 |
+
|
151 |
+
For more details and example usage in optimization, refer to the
|
152 |
+
`Flexible Isosurface Extraction for Gradient-Based Mesh Optimization`_ SIGGRAPH 2023 paper.
|
153 |
+
|
154 |
+
Args:
|
155 |
+
x_nx3 (torch.Tensor): Coordinates of the voxel grid vertices, can be deformed.
|
156 |
+
s_n (torch.Tensor): Scalar field values at each vertex of the voxel grid. Negative values
|
157 |
+
denote that the corresponding vertex resides inside the isosurface. This affects
|
158 |
+
the directions of the extracted triangle faces and volume to be tetrahedralized.
|
159 |
+
cube_fx8 (torch.Tensor): Indices of 8 vertices for each cube in the voxel grid.
|
160 |
+
res (int or list[int]): The resolution of the voxel grid. If an integer is provided, it
|
161 |
+
is used for all three dimensions. If a list or tuple of 3 integers is provided, they
|
162 |
+
specify the resolution for the x, y, and z dimensions respectively.
|
163 |
+
beta_fx12 (torch.Tensor, optional): Weight parameters for the cube edges to adjust dual
|
164 |
+
vertices positioning. Defaults to uniform value for all edges.
|
165 |
+
alpha_fx8 (torch.Tensor, optional): Weight parameters for the cube corners to adjust dual
|
166 |
+
vertices positioning. Defaults to uniform value for all vertices.
|
167 |
+
gamma_f (torch.Tensor, optional): Weight parameters to control the splitting of
|
168 |
+
quadrilaterals into triangles. Defaults to uniform value for all cubes.
|
169 |
+
training (bool, optional): If set to True, applies differentiable quad splitting for
|
170 |
+
training. Defaults to False.
|
171 |
+
output_tetmesh (bool, optional): If set to True, outputs a tetrahedral mesh, otherwise,
|
172 |
+
outputs a triangular mesh. Defaults to False.
|
173 |
+
grad_func (callable, optional): A function to compute the surface gradient at specified
|
174 |
+
3D positions (input: Nx3 positions). The function should return gradients as an Nx3
|
175 |
+
tensor. If None, the original FlexiCubes algorithm is utilized. Defaults to None.
|
176 |
+
|
177 |
+
Returns:
|
178 |
+
(torch.Tensor, torch.LongTensor, torch.Tensor): Tuple containing:
|
179 |
+
- Vertices for the extracted triangular/tetrahedral mesh.
|
180 |
+
- Faces for the extracted triangular/tetrahedral mesh.
|
181 |
+
- Regularizer L_dev, computed per dual vertex.
|
182 |
+
|
183 |
+
.. _Flexible Isosurface Extraction for Gradient-Based Mesh Optimization:
|
184 |
+
https://research.nvidia.com/labs/toronto-ai/flexicubes/
|
185 |
+
.. _Manifold Dual Contouring:
|
186 |
+
https://people.engr.tamu.edu/schaefer/research/dualsimp_tvcg.pdf
|
187 |
+
"""
|
188 |
+
|
189 |
+
surf_cubes, occ_fx8 = self._identify_surf_cubes(s_n, cube_fx8)
|
190 |
+
if surf_cubes.sum() == 0:
|
191 |
+
return torch.zeros(
|
192 |
+
(0, 3),
|
193 |
+
device=self.device), torch.zeros(
|
194 |
+
(0, 4),
|
195 |
+
dtype=torch.long, device=self.device) if output_tetmesh else torch.zeros(
|
196 |
+
(0, 3),
|
197 |
+
dtype=torch.long, device=self.device), torch.zeros(
|
198 |
+
(0),
|
199 |
+
device=self.device)
|
200 |
+
beta_fx12, alpha_fx8, gamma_f = self._normalize_weights(beta_fx12, alpha_fx8, gamma_f, surf_cubes)
|
201 |
+
|
202 |
+
case_ids = self._get_case_id(occ_fx8, surf_cubes, res)
|
203 |
+
|
204 |
+
surf_edges, idx_map, edge_counts, surf_edges_mask = self._identify_surf_edges(s_n, cube_fx8, surf_cubes)
|
205 |
+
|
206 |
+
vd, L_dev, vd_gamma, vd_idx_map = self._compute_vd(
|
207 |
+
x_nx3, cube_fx8[surf_cubes], surf_edges, s_n, case_ids, beta_fx12, alpha_fx8, gamma_f, idx_map, grad_func)
|
208 |
+
vertices, faces, s_edges, edge_indices = self._triangulate(
|
209 |
+
s_n, surf_edges, vd, vd_gamma, edge_counts, idx_map, vd_idx_map, surf_edges_mask, training, grad_func)
|
210 |
+
if not output_tetmesh:
|
211 |
+
return vertices, faces, L_dev
|
212 |
+
else:
|
213 |
+
vertices, tets = self._tetrahedralize(
|
214 |
+
x_nx3, s_n, cube_fx8, vertices, faces, surf_edges, s_edges, vd_idx_map, case_ids, edge_indices,
|
215 |
+
surf_cubes, training)
|
216 |
+
return vertices, tets, L_dev
|
217 |
+
|
218 |
+
def _compute_reg_loss(self, vd, ue, edge_group_to_vd, vd_num_edges):
|
219 |
+
"""
|
220 |
+
Regularizer L_dev as in Equation 8
|
221 |
+
"""
|
222 |
+
dist = torch.norm(ue - torch.index_select(input=vd, index=edge_group_to_vd, dim=0), dim=-1)
|
223 |
+
mean_l2 = torch.zeros_like(vd[:, 0])
|
224 |
+
mean_l2 = (mean_l2).index_add_(0, edge_group_to_vd, dist) / vd_num_edges.squeeze(1).float()
|
225 |
+
mad = (dist - torch.index_select(input=mean_l2, index=edge_group_to_vd, dim=0)).abs()
|
226 |
+
return mad
|
227 |
+
|
228 |
+
def _normalize_weights(self, beta_fx12, alpha_fx8, gamma_f, surf_cubes):
|
229 |
+
"""
|
230 |
+
Normalizes the given weights to be non-negative. If input weights are None, it creates and returns a set of weights of ones.
|
231 |
+
"""
|
232 |
+
n_cubes = surf_cubes.shape[0]
|
233 |
+
|
234 |
+
if beta_fx12 is not None:
|
235 |
+
beta_fx12 = (torch.tanh(beta_fx12) * self.weight_scale + 1)
|
236 |
+
else:
|
237 |
+
beta_fx12 = torch.ones((n_cubes, 12), dtype=torch.float, device=self.device)
|
238 |
+
|
239 |
+
if alpha_fx8 is not None:
|
240 |
+
alpha_fx8 = (torch.tanh(alpha_fx8) * self.weight_scale + 1)
|
241 |
+
else:
|
242 |
+
alpha_fx8 = torch.ones((n_cubes, 8), dtype=torch.float, device=self.device)
|
243 |
+
|
244 |
+
if gamma_f is not None:
|
245 |
+
gamma_f = torch.sigmoid(gamma_f) * self.weight_scale + (1 - self.weight_scale)/2
|
246 |
+
else:
|
247 |
+
gamma_f = torch.ones((n_cubes), dtype=torch.float, device=self.device)
|
248 |
+
|
249 |
+
return beta_fx12[surf_cubes], alpha_fx8[surf_cubes], gamma_f[surf_cubes]
|
250 |
+
|
251 |
+
@torch.no_grad()
|
252 |
+
def _get_case_id(self, occ_fx8, surf_cubes, res):
|
253 |
+
"""
|
254 |
+
Obtains the ID of topology cases based on cell corner occupancy. This function resolves the
|
255 |
+
ambiguity in the Dual Marching Cubes (DMC) configurations as described in Section 1.3 of the
|
256 |
+
supplementary material. It should be noted that this function assumes a regular grid.
|
257 |
+
"""
|
258 |
+
case_ids = (occ_fx8[surf_cubes] * self.cube_corners_idx.to(self.device).unsqueeze(0)).sum(-1)
|
259 |
+
|
260 |
+
problem_config = self.check_table.to(self.device)[case_ids]
|
261 |
+
to_check = problem_config[..., 0] == 1
|
262 |
+
problem_config = problem_config[to_check]
|
263 |
+
if not isinstance(res, (list, tuple)):
|
264 |
+
res = [res, res, res]
|
265 |
+
|
266 |
+
# The 'problematic_configs' only contain configurations for surface cubes. Next, we construct a 3D array,
|
267 |
+
# 'problem_config_full', to store configurations for all cubes (with default config for non-surface cubes).
|
268 |
+
# This allows efficient checking on adjacent cubes.
|
269 |
+
problem_config_full = torch.zeros(list(res) + [5], device=self.device, dtype=torch.long)
|
270 |
+
vol_idx = torch.nonzero(problem_config_full[..., 0] == 0) # N, 3
|
271 |
+
vol_idx_problem = vol_idx[surf_cubes][to_check]
|
272 |
+
problem_config_full[vol_idx_problem[..., 0], vol_idx_problem[..., 1], vol_idx_problem[..., 2]] = problem_config
|
273 |
+
vol_idx_problem_adj = vol_idx_problem + problem_config[..., 1:4]
|
274 |
+
|
275 |
+
within_range = (
|
276 |
+
vol_idx_problem_adj[..., 0] >= 0) & (
|
277 |
+
vol_idx_problem_adj[..., 0] < res[0]) & (
|
278 |
+
vol_idx_problem_adj[..., 1] >= 0) & (
|
279 |
+
vol_idx_problem_adj[..., 1] < res[1]) & (
|
280 |
+
vol_idx_problem_adj[..., 2] >= 0) & (
|
281 |
+
vol_idx_problem_adj[..., 2] < res[2])
|
282 |
+
|
283 |
+
vol_idx_problem = vol_idx_problem[within_range]
|
284 |
+
vol_idx_problem_adj = vol_idx_problem_adj[within_range]
|
285 |
+
problem_config = problem_config[within_range]
|
286 |
+
problem_config_adj = problem_config_full[vol_idx_problem_adj[..., 0],
|
287 |
+
vol_idx_problem_adj[..., 1], vol_idx_problem_adj[..., 2]]
|
288 |
+
# If two cubes with cases C16 and C19 share an ambiguous face, both cases are inverted.
|
289 |
+
to_invert = (problem_config_adj[..., 0] == 1)
|
290 |
+
idx = torch.arange(case_ids.shape[0], device=self.device)[to_check][within_range][to_invert]
|
291 |
+
case_ids.index_put_((idx,), problem_config[to_invert][..., -1])
|
292 |
+
return case_ids
|
293 |
+
|
294 |
+
@torch.no_grad()
|
295 |
+
def _identify_surf_edges(self, s_n, cube_fx8, surf_cubes):
|
296 |
+
"""
|
297 |
+
Identifies grid edges that intersect with the underlying surface by checking for opposite signs. As each edge
|
298 |
+
can be shared by multiple cubes, this function also assigns a unique index to each surface-intersecting edge
|
299 |
+
and marks the cube edges with this index.
|
300 |
+
"""
|
301 |
+
occ_n = s_n < 0
|
302 |
+
all_edges = cube_fx8[surf_cubes][:, self.cube_edges].reshape(-1, 2)
|
303 |
+
unique_edges, _idx_map, counts = torch.unique(all_edges, dim=0, return_inverse=True, return_counts=True)
|
304 |
+
|
305 |
+
unique_edges = unique_edges.long()
|
306 |
+
mask_edges = occ_n[unique_edges.reshape(-1)].reshape(-1, 2).sum(-1) == 1
|
307 |
+
|
308 |
+
surf_edges_mask = mask_edges[_idx_map]
|
309 |
+
counts = counts[_idx_map]
|
310 |
+
|
311 |
+
mapping = torch.ones((unique_edges.shape[0]), dtype=torch.long, device=cube_fx8.device) * -1
|
312 |
+
mapping[mask_edges] = torch.arange(mask_edges.sum(), device=cube_fx8.device)
|
313 |
+
# Shaped as [number of cubes x 12 edges per cube]. This is later used to map a cube edge to the unique index
|
314 |
+
# for a surface-intersecting edge. Non-surface-intersecting edges are marked with -1.
|
315 |
+
idx_map = mapping[_idx_map]
|
316 |
+
surf_edges = unique_edges[mask_edges]
|
317 |
+
return surf_edges, idx_map, counts, surf_edges_mask
|
318 |
+
|
319 |
+
@torch.no_grad()
|
320 |
+
def _identify_surf_cubes(self, s_n, cube_fx8):
|
321 |
+
"""
|
322 |
+
Identifies grid cubes that intersect with the underlying surface by checking if the signs at
|
323 |
+
all corners are not identical.
|
324 |
+
"""
|
325 |
+
occ_n = s_n < 0
|
326 |
+
occ_fx8 = occ_n[cube_fx8.reshape(-1)].reshape(-1, 8)
|
327 |
+
_occ_sum = torch.sum(occ_fx8, -1)
|
328 |
+
surf_cubes = (_occ_sum > 0) & (_occ_sum < 8)
|
329 |
+
return surf_cubes, occ_fx8
|
330 |
+
|
331 |
+
def _linear_interp(self, edges_weight, edges_x):
|
332 |
+
"""
|
333 |
+
Computes the location of zero-crossings on 'edges_x' using linear interpolation with 'edges_weight'.
|
334 |
+
"""
|
335 |
+
edge_dim = edges_weight.dim() - 2
|
336 |
+
assert edges_weight.shape[edge_dim] == 2
|
337 |
+
edges_weight = torch.cat([torch.index_select(input=edges_weight, index=torch.tensor(1, device=self.device), dim=edge_dim), -
|
338 |
+
torch.index_select(input=edges_weight, index=torch.tensor(0, device=self.device), dim=edge_dim)], edge_dim)
|
339 |
+
denominator = edges_weight.sum(edge_dim)
|
340 |
+
ue = (edges_x * edges_weight).sum(edge_dim) / denominator
|
341 |
+
return ue
|
342 |
+
|
343 |
+
def _solve_vd_QEF(self, p_bxnx3, norm_bxnx3, c_bx3=None):
|
344 |
+
p_bxnx3 = p_bxnx3.reshape(-1, 7, 3)
|
345 |
+
norm_bxnx3 = norm_bxnx3.reshape(-1, 7, 3)
|
346 |
+
c_bx3 = c_bx3.reshape(-1, 3)
|
347 |
+
A = norm_bxnx3
|
348 |
+
B = ((p_bxnx3) * norm_bxnx3).sum(-1, keepdims=True)
|
349 |
+
|
350 |
+
A_reg = (torch.eye(3, device=p_bxnx3.device) * self.qef_reg_scale).unsqueeze(0).repeat(p_bxnx3.shape[0], 1, 1)
|
351 |
+
B_reg = (self.qef_reg_scale * c_bx3).unsqueeze(-1)
|
352 |
+
A = torch.cat([A, A_reg], 1)
|
353 |
+
B = torch.cat([B, B_reg], 1)
|
354 |
+
dual_verts = torch.linalg.lstsq(A, B).solution.squeeze(-1)
|
355 |
+
return dual_verts
|
356 |
+
|
357 |
+
def _compute_vd(self, x_nx3, surf_cubes_fx8, surf_edges, s_n, case_ids, beta_fx12, alpha_fx8, gamma_f, idx_map, grad_func):
|
358 |
+
"""
|
359 |
+
Computes the location of dual vertices as described in Section 4.2
|
360 |
+
"""
|
361 |
+
alpha_nx12x2 = torch.index_select(input=alpha_fx8, index=self.cube_edges, dim=1).reshape(-1, 12, 2)
|
362 |
+
surf_edges_x = torch.index_select(input=x_nx3, index=surf_edges.reshape(-1), dim=0).reshape(-1, 2, 3)
|
363 |
+
surf_edges_s = torch.index_select(input=s_n, index=surf_edges.reshape(-1), dim=0).reshape(-1, 2, 1)
|
364 |
+
zero_crossing = self._linear_interp(surf_edges_s, surf_edges_x)
|
365 |
+
|
366 |
+
idx_map = idx_map.reshape(-1, 12)
|
367 |
+
num_vd = torch.index_select(input=self.num_vd_table, index=case_ids, dim=0)
|
368 |
+
edge_group, edge_group_to_vd, edge_group_to_cube, vd_num_edges, vd_gamma = [], [], [], [], []
|
369 |
+
|
370 |
+
total_num_vd = 0
|
371 |
+
vd_idx_map = torch.zeros((case_ids.shape[0], 12), dtype=torch.long, device=self.device, requires_grad=False)
|
372 |
+
if grad_func is not None:
|
373 |
+
normals = torch.nn.functional.normalize(grad_func(zero_crossing), dim=-1)
|
374 |
+
vd = []
|
375 |
+
for num in torch.unique(num_vd):
|
376 |
+
cur_cubes = (num_vd == num) # consider cubes with the same numbers of vd emitted (for batching)
|
377 |
+
curr_num_vd = cur_cubes.sum() * num
|
378 |
+
curr_edge_group = self.dmc_table[case_ids[cur_cubes], :num].reshape(-1, num * 7)
|
379 |
+
curr_edge_group_to_vd = torch.arange(
|
380 |
+
curr_num_vd, device=self.device).unsqueeze(-1).repeat(1, 7) + total_num_vd
|
381 |
+
total_num_vd += curr_num_vd
|
382 |
+
curr_edge_group_to_cube = torch.arange(idx_map.shape[0], device=self.device)[
|
383 |
+
cur_cubes].unsqueeze(-1).repeat(1, num * 7).reshape_as(curr_edge_group)
|
384 |
+
|
385 |
+
curr_mask = (curr_edge_group != -1)
|
386 |
+
edge_group.append(torch.masked_select(curr_edge_group, curr_mask))
|
387 |
+
edge_group_to_vd.append(torch.masked_select(curr_edge_group_to_vd.reshape_as(curr_edge_group), curr_mask))
|
388 |
+
edge_group_to_cube.append(torch.masked_select(curr_edge_group_to_cube, curr_mask))
|
389 |
+
vd_num_edges.append(curr_mask.reshape(-1, 7).sum(-1, keepdims=True))
|
390 |
+
vd_gamma.append(torch.masked_select(gamma_f, cur_cubes).unsqueeze(-1).repeat(1, num).reshape(-1))
|
391 |
+
|
392 |
+
if grad_func is not None:
|
393 |
+
with torch.no_grad():
|
394 |
+
cube_e_verts_idx = idx_map[cur_cubes]
|
395 |
+
curr_edge_group[~curr_mask] = 0
|
396 |
+
|
397 |
+
verts_group_idx = torch.gather(input=cube_e_verts_idx, dim=1, index=curr_edge_group)
|
398 |
+
verts_group_idx[verts_group_idx == -1] = 0
|
399 |
+
verts_group_pos = torch.index_select(
|
400 |
+
input=zero_crossing, index=verts_group_idx.reshape(-1), dim=0).reshape(-1, num.item(), 7, 3)
|
401 |
+
v0 = x_nx3[surf_cubes_fx8[cur_cubes][:, 0]].reshape(-1, 1, 1, 3).repeat(1, num.item(), 1, 1)
|
402 |
+
curr_mask = curr_mask.reshape(-1, num.item(), 7, 1)
|
403 |
+
verts_centroid = (verts_group_pos * curr_mask).sum(2) / (curr_mask.sum(2))
|
404 |
+
|
405 |
+
normals_bx7x3 = torch.index_select(input=normals, index=verts_group_idx.reshape(-1), dim=0).reshape(
|
406 |
+
-1, num.item(), 7,
|
407 |
+
3)
|
408 |
+
curr_mask = curr_mask.squeeze(2)
|
409 |
+
vd.append(self._solve_vd_QEF((verts_group_pos - v0) * curr_mask, normals_bx7x3 * curr_mask,
|
410 |
+
verts_centroid - v0.squeeze(2)) + v0.reshape(-1, 3))
|
411 |
+
edge_group = torch.cat(edge_group)
|
412 |
+
edge_group_to_vd = torch.cat(edge_group_to_vd)
|
413 |
+
edge_group_to_cube = torch.cat(edge_group_to_cube)
|
414 |
+
vd_num_edges = torch.cat(vd_num_edges)
|
415 |
+
vd_gamma = torch.cat(vd_gamma)
|
416 |
+
|
417 |
+
if grad_func is not None:
|
418 |
+
vd = torch.cat(vd)
|
419 |
+
L_dev = torch.zeros([1], device=self.device)
|
420 |
+
else:
|
421 |
+
vd = torch.zeros((total_num_vd, 3), device=self.device)
|
422 |
+
beta_sum = torch.zeros((total_num_vd, 1), device=self.device)
|
423 |
+
|
424 |
+
idx_group = torch.gather(input=idx_map.reshape(-1), dim=0, index=edge_group_to_cube * 12 + edge_group)
|
425 |
+
|
426 |
+
x_group = torch.index_select(input=surf_edges_x, index=idx_group.reshape(-1), dim=0).reshape(-1, 2, 3)
|
427 |
+
s_group = torch.index_select(input=surf_edges_s, index=idx_group.reshape(-1), dim=0).reshape(-1, 2, 1)
|
428 |
+
|
429 |
+
zero_crossing_group = torch.index_select(
|
430 |
+
input=zero_crossing, index=idx_group.reshape(-1), dim=0).reshape(-1, 3)
|
431 |
+
|
432 |
+
alpha_group = torch.index_select(input=alpha_nx12x2.reshape(-1, 2), dim=0,
|
433 |
+
index=edge_group_to_cube * 12 + edge_group).reshape(-1, 2, 1)
|
434 |
+
ue_group = self._linear_interp(s_group * alpha_group, x_group)
|
435 |
+
|
436 |
+
beta_group = torch.gather(input=beta_fx12.reshape(-1), dim=0,
|
437 |
+
index=edge_group_to_cube * 12 + edge_group).reshape(-1, 1)
|
438 |
+
beta_sum = beta_sum.index_add_(0, index=edge_group_to_vd, source=beta_group)
|
439 |
+
vd = vd.index_add_(0, index=edge_group_to_vd, source=ue_group * beta_group) / beta_sum
|
440 |
+
L_dev = self._compute_reg_loss(vd, zero_crossing_group, edge_group_to_vd, vd_num_edges)
|
441 |
+
|
442 |
+
v_idx = torch.arange(vd.shape[0], device=self.device) # + total_num_vd
|
443 |
+
|
444 |
+
vd_idx_map = (vd_idx_map.reshape(-1)).scatter(dim=0, index=edge_group_to_cube *
|
445 |
+
12 + edge_group, src=v_idx[edge_group_to_vd])
|
446 |
+
|
447 |
+
return vd, L_dev, vd_gamma, vd_idx_map
|
448 |
+
|
449 |
+
def _triangulate(self, s_n, surf_edges, vd, vd_gamma, edge_counts, idx_map, vd_idx_map, surf_edges_mask, training, grad_func):
|
450 |
+
"""
|
451 |
+
Connects four neighboring dual vertices to form a quadrilateral. The quadrilaterals are then split into
|
452 |
+
triangles based on the gamma parameter, as described in Section 4.3.
|
453 |
+
"""
|
454 |
+
with torch.no_grad():
|
455 |
+
group_mask = (edge_counts == 4) & surf_edges_mask # surface edges shared by 4 cubes.
|
456 |
+
group = idx_map.reshape(-1)[group_mask]
|
457 |
+
vd_idx = vd_idx_map[group_mask]
|
458 |
+
edge_indices, indices = torch.sort(group, stable=True)
|
459 |
+
quad_vd_idx = vd_idx[indices].reshape(-1, 4)
|
460 |
+
|
461 |
+
# Ensure all face directions point towards the positive SDF to maintain consistent winding.
|
462 |
+
s_edges = s_n[surf_edges[edge_indices.reshape(-1, 4)[:, 0]].reshape(-1)].reshape(-1, 2)
|
463 |
+
flip_mask = s_edges[:, 0] > 0
|
464 |
+
quad_vd_idx = torch.cat((quad_vd_idx[flip_mask][:, [0, 1, 3, 2]],
|
465 |
+
quad_vd_idx[~flip_mask][:, [2, 3, 1, 0]]))
|
466 |
+
if grad_func is not None:
|
467 |
+
# when grad_func is given, split quadrilaterals along the diagonals with more consistent gradients.
|
468 |
+
with torch.no_grad():
|
469 |
+
vd_gamma = torch.nn.functional.normalize(grad_func(vd), dim=-1)
|
470 |
+
quad_gamma = torch.index_select(input=vd_gamma, index=quad_vd_idx.reshape(-1), dim=0).reshape(-1, 4, 3)
|
471 |
+
gamma_02 = (quad_gamma[:, 0] * quad_gamma[:, 2]).sum(-1, keepdims=True)
|
472 |
+
gamma_13 = (quad_gamma[:, 1] * quad_gamma[:, 3]).sum(-1, keepdims=True)
|
473 |
+
else:
|
474 |
+
quad_gamma = torch.index_select(input=vd_gamma, index=quad_vd_idx.reshape(-1), dim=0).reshape(-1, 4)
|
475 |
+
gamma_02 = torch.index_select(input=quad_gamma, index=torch.tensor(
|
476 |
+
0, device=self.device), dim=1) * torch.index_select(input=quad_gamma, index=torch.tensor(2, device=self.device), dim=1)
|
477 |
+
gamma_13 = torch.index_select(input=quad_gamma, index=torch.tensor(
|
478 |
+
1, device=self.device), dim=1) * torch.index_select(input=quad_gamma, index=torch.tensor(3, device=self.device), dim=1)
|
479 |
+
if not training:
|
480 |
+
mask = (gamma_02 > gamma_13).squeeze(1)
|
481 |
+
faces = torch.zeros((quad_gamma.shape[0], 6), dtype=torch.long, device=quad_vd_idx.device)
|
482 |
+
faces[mask] = quad_vd_idx[mask][:, self.quad_split_1]
|
483 |
+
faces[~mask] = quad_vd_idx[~mask][:, self.quad_split_2]
|
484 |
+
faces = faces.reshape(-1, 3)
|
485 |
+
else:
|
486 |
+
vd_quad = torch.index_select(input=vd, index=quad_vd_idx.reshape(-1), dim=0).reshape(-1, 4, 3)
|
487 |
+
vd_02 = (torch.index_select(input=vd_quad, index=torch.tensor(0, device=self.device), dim=1) +
|
488 |
+
torch.index_select(input=vd_quad, index=torch.tensor(2, device=self.device), dim=1)) / 2
|
489 |
+
vd_13 = (torch.index_select(input=vd_quad, index=torch.tensor(1, device=self.device), dim=1) +
|
490 |
+
torch.index_select(input=vd_quad, index=torch.tensor(3, device=self.device), dim=1)) / 2
|
491 |
+
weight_sum = (gamma_02 + gamma_13) + 1e-8
|
492 |
+
vd_center = ((vd_02 * gamma_02.unsqueeze(-1) + vd_13 * gamma_13.unsqueeze(-1)) /
|
493 |
+
weight_sum.unsqueeze(-1)).squeeze(1)
|
494 |
+
vd_center_idx = torch.arange(vd_center.shape[0], device=self.device) + vd.shape[0]
|
495 |
+
vd = torch.cat([vd, vd_center])
|
496 |
+
faces = quad_vd_idx[:, self.quad_split_train].reshape(-1, 4, 2)
|
497 |
+
faces = torch.cat([faces, vd_center_idx.reshape(-1, 1, 1).repeat(1, 4, 1)], -1).reshape(-1, 3)
|
498 |
+
return vd, faces, s_edges, edge_indices
|
499 |
+
|
500 |
+
def _tetrahedralize(
|
501 |
+
self, x_nx3, s_n, cube_fx8, vertices, faces, surf_edges, s_edges, vd_idx_map, case_ids, edge_indices,
|
502 |
+
surf_cubes, training):
|
503 |
+
"""
|
504 |
+
Tetrahedralizes the interior volume to produce a tetrahedral mesh, as described in Section 4.5.
|
505 |
+
"""
|
506 |
+
occ_n = s_n < 0
|
507 |
+
occ_fx8 = occ_n[cube_fx8.reshape(-1)].reshape(-1, 8)
|
508 |
+
occ_sum = torch.sum(occ_fx8, -1)
|
509 |
+
|
510 |
+
inside_verts = x_nx3[occ_n]
|
511 |
+
mapping_inside_verts = torch.ones((occ_n.shape[0]), dtype=torch.long, device=self.device) * -1
|
512 |
+
mapping_inside_verts[occ_n] = torch.arange(occ_n.sum(), device=self.device) + vertices.shape[0]
|
513 |
+
"""
|
514 |
+
For each grid edge connecting two grid vertices with different
|
515 |
+
signs, we first form a four-sided pyramid by connecting one
|
516 |
+
of the grid vertices with four mesh vertices that correspond
|
517 |
+
to the grid edge and then subdivide the pyramid into two tetrahedra
|
518 |
+
"""
|
519 |
+
inside_verts_idx = mapping_inside_verts[surf_edges[edge_indices.reshape(-1, 4)[:, 0]].reshape(-1, 2)[
|
520 |
+
s_edges < 0]]
|
521 |
+
if not training:
|
522 |
+
inside_verts_idx = inside_verts_idx.unsqueeze(1).expand(-1, 2).reshape(-1)
|
523 |
+
else:
|
524 |
+
inside_verts_idx = inside_verts_idx.unsqueeze(1).expand(-1, 4).reshape(-1)
|
525 |
+
|
526 |
+
tets_surface = torch.cat([faces, inside_verts_idx.unsqueeze(-1)], -1)
|
527 |
+
"""
|
528 |
+
For each grid edge connecting two grid vertices with the
|
529 |
+
same sign, the tetrahedron is formed by the two grid vertices
|
530 |
+
and two vertices in consecutive adjacent cells
|
531 |
+
"""
|
532 |
+
inside_cubes = (occ_sum == 8)
|
533 |
+
inside_cubes_center = x_nx3[cube_fx8[inside_cubes].reshape(-1)].reshape(-1, 8, 3).mean(1)
|
534 |
+
inside_cubes_center_idx = torch.arange(
|
535 |
+
inside_cubes_center.shape[0], device=inside_cubes.device) + vertices.shape[0] + inside_verts.shape[0]
|
536 |
+
|
537 |
+
surface_n_inside_cubes = surf_cubes | inside_cubes
|
538 |
+
edge_center_vertex_idx = torch.ones(((surface_n_inside_cubes).sum(), 13),
|
539 |
+
dtype=torch.long, device=x_nx3.device) * -1
|
540 |
+
surf_cubes = surf_cubes[surface_n_inside_cubes]
|
541 |
+
inside_cubes = inside_cubes[surface_n_inside_cubes]
|
542 |
+
edge_center_vertex_idx[surf_cubes, :12] = vd_idx_map.reshape(-1, 12)
|
543 |
+
edge_center_vertex_idx[inside_cubes, 12] = inside_cubes_center_idx
|
544 |
+
|
545 |
+
all_edges = cube_fx8[surface_n_inside_cubes][:, self.cube_edges].reshape(-1, 2)
|
546 |
+
unique_edges, _idx_map, counts = torch.unique(all_edges, dim=0, return_inverse=True, return_counts=True)
|
547 |
+
unique_edges = unique_edges.long()
|
548 |
+
mask_edges = occ_n[unique_edges.reshape(-1)].reshape(-1, 2).sum(-1) == 2
|
549 |
+
mask = mask_edges[_idx_map]
|
550 |
+
counts = counts[_idx_map]
|
551 |
+
mapping = torch.ones((unique_edges.shape[0]), dtype=torch.long, device=self.device) * -1
|
552 |
+
mapping[mask_edges] = torch.arange(mask_edges.sum(), device=self.device)
|
553 |
+
idx_map = mapping[_idx_map]
|
554 |
+
|
555 |
+
group_mask = (counts == 4) & mask
|
556 |
+
group = idx_map.reshape(-1)[group_mask]
|
557 |
+
edge_indices, indices = torch.sort(group)
|
558 |
+
cube_idx = torch.arange((_idx_map.shape[0] // 12), dtype=torch.long,
|
559 |
+
device=self.device).unsqueeze(1).expand(-1, 12).reshape(-1)[group_mask]
|
560 |
+
edge_idx = torch.arange((12), dtype=torch.long, device=self.device).unsqueeze(
|
561 |
+
0).expand(_idx_map.shape[0] // 12, -1).reshape(-1)[group_mask]
|
562 |
+
# Identify the face shared by the adjacent cells.
|
563 |
+
cube_idx_4 = cube_idx[indices].reshape(-1, 4)
|
564 |
+
edge_dir = self.edge_dir_table[edge_idx[indices]].reshape(-1, 4)[..., 0]
|
565 |
+
shared_faces_4x2 = self.dir_faces_table[edge_dir].reshape(-1)
|
566 |
+
cube_idx_4x2 = cube_idx_4[:, self.adj_pairs].reshape(-1)
|
567 |
+
# Identify an edge of the face with different signs and
|
568 |
+
# select the mesh vertex corresponding to the identified edge.
|
569 |
+
case_ids_expand = torch.ones((surface_n_inside_cubes).sum(), dtype=torch.long, device=x_nx3.device) * 255
|
570 |
+
case_ids_expand[surf_cubes] = case_ids
|
571 |
+
cases = case_ids_expand[cube_idx_4x2]
|
572 |
+
quad_edge = edge_center_vertex_idx[cube_idx_4x2, self.tet_table[cases, shared_faces_4x2]].reshape(-1, 2)
|
573 |
+
mask = (quad_edge == -1).sum(-1) == 0
|
574 |
+
inside_edge = mapping_inside_verts[unique_edges[mask_edges][edge_indices].reshape(-1)].reshape(-1, 2)
|
575 |
+
tets_inside = torch.cat([quad_edge, inside_edge], -1)[mask]
|
576 |
+
|
577 |
+
tets = torch.cat([tets_surface, tets_inside])
|
578 |
+
vertices = torch.cat([vertices, inside_verts, inside_cubes_center])
|
579 |
+
return vertices, tets
|
apps/third_party/CRM/util/flexicubes_geometry.py
ADDED
@@ -0,0 +1,116 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
2 |
+
#
|
3 |
+
# NVIDIA CORPORATION & AFFILIATES and its licensors retain all intellectual property
|
4 |
+
# and proprietary rights in and to this software, related documentation
|
5 |
+
# and any modifications thereto. Any use, reproduction, disclosure or
|
6 |
+
# distribution of this software and related documentation without an express
|
7 |
+
# license agreement from NVIDIA CORPORATION & AFFILIATES is strictly prohibited.
|
8 |
+
|
9 |
+
import torch
|
10 |
+
from util.flexicubes import FlexiCubes # replace later
|
11 |
+
# from dmtet import sdf_reg_loss_batch
|
12 |
+
import torch.nn.functional as F
|
13 |
+
|
14 |
+
def get_center_boundary_index(grid_res, device):
|
15 |
+
v = torch.zeros((grid_res + 1, grid_res + 1, grid_res + 1), dtype=torch.bool, device=device)
|
16 |
+
v[grid_res // 2 + 1, grid_res // 2 + 1, grid_res // 2 + 1] = True
|
17 |
+
center_indices = torch.nonzero(v.reshape(-1))
|
18 |
+
|
19 |
+
v[grid_res // 2 + 1, grid_res // 2 + 1, grid_res // 2 + 1] = False
|
20 |
+
v[:2, ...] = True
|
21 |
+
v[-2:, ...] = True
|
22 |
+
v[:, :2, ...] = True
|
23 |
+
v[:, -2:, ...] = True
|
24 |
+
v[:, :, :2] = True
|
25 |
+
v[:, :, -2:] = True
|
26 |
+
boundary_indices = torch.nonzero(v.reshape(-1))
|
27 |
+
return center_indices, boundary_indices
|
28 |
+
|
29 |
+
###############################################################################
|
30 |
+
# Geometry interface
|
31 |
+
###############################################################################
|
32 |
+
class FlexiCubesGeometry(object):
|
33 |
+
def __init__(
|
34 |
+
self, grid_res=64, scale=2.0, device='cuda', renderer=None,
|
35 |
+
render_type='neural_render', args=None):
|
36 |
+
super(FlexiCubesGeometry, self).__init__()
|
37 |
+
self.grid_res = grid_res
|
38 |
+
self.device = device
|
39 |
+
self.args = args
|
40 |
+
self.fc = FlexiCubes(device, weight_scale=0.5)
|
41 |
+
self.verts, self.indices = self.fc.construct_voxel_grid(grid_res)
|
42 |
+
if isinstance(scale, list):
|
43 |
+
self.verts[:, 0] = self.verts[:, 0] * scale[0]
|
44 |
+
self.verts[:, 1] = self.verts[:, 1] * scale[1]
|
45 |
+
self.verts[:, 2] = self.verts[:, 2] * scale[1]
|
46 |
+
else:
|
47 |
+
self.verts = self.verts * scale
|
48 |
+
|
49 |
+
all_edges = self.indices[:, self.fc.cube_edges].reshape(-1, 2)
|
50 |
+
self.all_edges = torch.unique(all_edges, dim=0)
|
51 |
+
|
52 |
+
# Parameters used for fix boundary sdf
|
53 |
+
self.center_indices, self.boundary_indices = get_center_boundary_index(self.grid_res, device)
|
54 |
+
self.renderer = renderer
|
55 |
+
self.render_type = render_type
|
56 |
+
|
57 |
+
def getAABB(self):
|
58 |
+
return torch.min(self.verts, dim=0).values, torch.max(self.verts, dim=0).values
|
59 |
+
|
60 |
+
def get_mesh(self, v_deformed_nx3, sdf_n, weight_n=None, with_uv=False, indices=None, is_training=False):
|
61 |
+
if indices is None:
|
62 |
+
indices = self.indices
|
63 |
+
|
64 |
+
verts, faces, v_reg_loss = self.fc(v_deformed_nx3, sdf_n, indices, self.grid_res,
|
65 |
+
beta_fx12=weight_n[:, :12], alpha_fx8=weight_n[:, 12:20],
|
66 |
+
gamma_f=weight_n[:, 20], training=is_training
|
67 |
+
)
|
68 |
+
return verts, faces, v_reg_loss
|
69 |
+
|
70 |
+
|
71 |
+
def render_mesh(self, mesh_v_nx3, mesh_f_fx3, camera_mv_bx4x4, resolution=256, hierarchical_mask=False):
|
72 |
+
return_value = dict()
|
73 |
+
if self.render_type == 'neural_render':
|
74 |
+
tex_pos, mask, hard_mask, rast, v_pos_clip, mask_pyramid, depth = self.renderer.render_mesh(
|
75 |
+
mesh_v_nx3.unsqueeze(dim=0),
|
76 |
+
mesh_f_fx3.int(),
|
77 |
+
camera_mv_bx4x4,
|
78 |
+
mesh_v_nx3.unsqueeze(dim=0),
|
79 |
+
resolution=resolution,
|
80 |
+
device=self.device,
|
81 |
+
hierarchical_mask=hierarchical_mask
|
82 |
+
)
|
83 |
+
|
84 |
+
return_value['tex_pos'] = tex_pos
|
85 |
+
return_value['mask'] = mask
|
86 |
+
return_value['hard_mask'] = hard_mask
|
87 |
+
return_value['rast'] = rast
|
88 |
+
return_value['v_pos_clip'] = v_pos_clip
|
89 |
+
return_value['mask_pyramid'] = mask_pyramid
|
90 |
+
return_value['depth'] = depth
|
91 |
+
else:
|
92 |
+
raise NotImplementedError
|
93 |
+
|
94 |
+
return return_value
|
95 |
+
|
96 |
+
def render(self, v_deformed_bxnx3=None, sdf_bxn=None, camera_mv_bxnviewx4x4=None, resolution=256):
|
97 |
+
# Here I assume a batch of meshes (can be different mesh and geometry), for the other shapes, the batch is 1
|
98 |
+
v_list = []
|
99 |
+
f_list = []
|
100 |
+
n_batch = v_deformed_bxnx3.shape[0]
|
101 |
+
all_render_output = []
|
102 |
+
for i_batch in range(n_batch):
|
103 |
+
verts_nx3, faces_fx3 = self.get_mesh(v_deformed_bxnx3[i_batch], sdf_bxn[i_batch])
|
104 |
+
v_list.append(verts_nx3)
|
105 |
+
f_list.append(faces_fx3)
|
106 |
+
render_output = self.render_mesh(verts_nx3, faces_fx3, camera_mv_bxnviewx4x4[i_batch], resolution)
|
107 |
+
all_render_output.append(render_output)
|
108 |
+
|
109 |
+
# Concatenate all render output
|
110 |
+
return_keys = all_render_output[0].keys()
|
111 |
+
return_value = dict()
|
112 |
+
for k in return_keys:
|
113 |
+
value = [v[k] for v in all_render_output]
|
114 |
+
return_value[k] = value
|
115 |
+
# We can do concatenation outside of the render
|
116 |
+
return return_value
|
apps/third_party/CRM/util/renderer.py
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
import nvdiffrast.torch as dr
|
5 |
+
from util.flexicubes_geometry import FlexiCubesGeometry
|
6 |
+
|
7 |
+
class Renderer(nn.Module):
|
8 |
+
def __init__(self, tet_grid_size, camera_angle_num, scale, geo_type):
|
9 |
+
super().__init__()
|
10 |
+
|
11 |
+
self.tet_grid_size = tet_grid_size
|
12 |
+
self.camera_angle_num = camera_angle_num
|
13 |
+
self.scale = scale
|
14 |
+
self.geo_type = geo_type
|
15 |
+
self.glctx = dr.RasterizeCudaContext()
|
16 |
+
|
17 |
+
if self.geo_type == "flex":
|
18 |
+
self.flexicubes = FlexiCubesGeometry(grid_res = self.tet_grid_size)
|
19 |
+
|
20 |
+
def forward(self, data, sdf, deform, verts, tets, training=False, weight = None):
|
21 |
+
|
22 |
+
results = {}
|
23 |
+
|
24 |
+
deform = torch.tanh(deform) / self.tet_grid_size * self.scale / 0.95
|
25 |
+
if self.geo_type == "flex":
|
26 |
+
deform = deform *0.5
|
27 |
+
|
28 |
+
v_deformed = verts + deform
|
29 |
+
|
30 |
+
verts_list = []
|
31 |
+
faces_list = []
|
32 |
+
reg_list = []
|
33 |
+
n_shape = verts.shape[0]
|
34 |
+
for i in range(n_shape):
|
35 |
+
verts_i, faces_i, reg_i = self.flexicubes.get_mesh(v_deformed[i], sdf[i].squeeze(dim=-1),
|
36 |
+
with_uv=False, indices=tets, weight_n=weight[i], is_training=training)
|
37 |
+
|
38 |
+
verts_list.append(verts_i)
|
39 |
+
faces_list.append(faces_i)
|
40 |
+
reg_list.append(reg_i)
|
41 |
+
verts = verts_list
|
42 |
+
faces = faces_list
|
43 |
+
|
44 |
+
flexicubes_surface_reg = torch.cat(reg_list).mean()
|
45 |
+
flexicubes_weight_reg = (weight ** 2).mean()
|
46 |
+
results["flex_surf_loss"] = flexicubes_surface_reg
|
47 |
+
results["flex_weight_loss"] = flexicubes_weight_reg
|
48 |
+
|
49 |
+
return results, verts, faces
|
apps/third_party/CRM/util/tables.py
ADDED
@@ -0,0 +1,791 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
2 |
+
#
|
3 |
+
# NVIDIA CORPORATION & AFFILIATES and its licensors retain all intellectual property
|
4 |
+
# and proprietary rights in and to this software, related documentation
|
5 |
+
# and any modifications thereto. Any use, reproduction, disclosure or
|
6 |
+
# distribution of this software and related documentation without an express
|
7 |
+
# license agreement from NVIDIA CORPORATION & AFFILIATES is strictly prohibited.
|
8 |
+
dmc_table = [
|
9 |
+
[[-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
10 |
+
[[0, 3, 8, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
11 |
+
[[0, 1, 9, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
12 |
+
[[1, 3, 8, 9, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
13 |
+
[[4, 7, 8, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
14 |
+
[[0, 3, 4, 7, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
15 |
+
[[0, 1, 9, -1, -1, -1, -1], [4, 7, 8, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
16 |
+
[[1, 3, 4, 7, 9, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
17 |
+
[[4, 5, 9, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
18 |
+
[[0, 3, 8, -1, -1, -1, -1], [4, 5, 9, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
19 |
+
[[0, 1, 4, 5, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
20 |
+
[[1, 3, 4, 5, 8, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
21 |
+
[[5, 7, 8, 9, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
22 |
+
[[0, 3, 5, 7, 9, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
23 |
+
[[0, 1, 5, 7, 8, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
24 |
+
[[1, 3, 5, 7, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
25 |
+
[[2, 3, 11, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
26 |
+
[[0, 2, 8, 11, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
27 |
+
[[0, 1, 9, -1, -1, -1, -1], [2, 3, 11, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
28 |
+
[[1, 2, 8, 9, 11, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
29 |
+
[[4, 7, 8, -1, -1, -1, -1], [2, 3, 11, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
30 |
+
[[0, 2, 4, 7, 11, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
31 |
+
[[0, 1, 9, -1, -1, -1, -1], [4, 7, 8, -1, -1, -1, -1], [2, 3, 11, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
32 |
+
[[1, 2, 4, 7, 9, 11, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
33 |
+
[[4, 5, 9, -1, -1, -1, -1], [2, 3, 11, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
34 |
+
[[0, 2, 8, 11, -1, -1, -1], [4, 5, 9, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
35 |
+
[[0, 1, 4, 5, -1, -1, -1], [2, 3, 11, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
36 |
+
[[1, 2, 4, 5, 8, 11, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
37 |
+
[[5, 7, 8, 9, -1, -1, -1], [2, 3, 11, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
38 |
+
[[0, 2, 5, 7, 9, 11, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
39 |
+
[[0, 1, 5, 7, 8, -1, -1], [2, 3, 11, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
40 |
+
[[1, 2, 5, 7, 11, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
41 |
+
[[1, 2, 10, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
42 |
+
[[0, 3, 8, -1, -1, -1, -1], [1, 2, 10, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
43 |
+
[[0, 2, 9, 10, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
44 |
+
[[2, 3, 8, 9, 10, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
45 |
+
[[4, 7, 8, -1, -1, -1, -1], [1, 2, 10, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
46 |
+
[[0, 3, 4, 7, -1, -1, -1], [1, 2, 10, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
47 |
+
[[0, 2, 9, 10, -1, -1, -1], [4, 7, 8, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
48 |
+
[[2, 3, 4, 7, 9, 10, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
49 |
+
[[4, 5, 9, -1, -1, -1, -1], [1, 2, 10, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
50 |
+
[[0, 3, 8, -1, -1, -1, -1], [4, 5, 9, -1, -1, -1, -1], [1, 2, 10, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
51 |
+
[[0, 2, 4, 5, 10, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
52 |
+
[[2, 3, 4, 5, 8, 10, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
53 |
+
[[5, 7, 8, 9, -1, -1, -1], [1, 2, 10, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
54 |
+
[[0, 3, 5, 7, 9, -1, -1], [1, 2, 10, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
55 |
+
[[0, 2, 5, 7, 8, 10, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
56 |
+
[[2, 3, 5, 7, 10, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
57 |
+
[[1, 3, 10, 11, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
58 |
+
[[0, 1, 8, 10, 11, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
59 |
+
[[0, 3, 9, 10, 11, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
60 |
+
[[8, 9, 10, 11, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
61 |
+
[[4, 7, 8, -1, -1, -1, -1], [1, 3, 10, 11, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
62 |
+
[[0, 1, 4, 7, 10, 11, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
63 |
+
[[0, 3, 9, 10, 11, -1, -1], [4, 7, 8, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
64 |
+
[[4, 7, 9, 10, 11, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
65 |
+
[[4, 5, 9, -1, -1, -1, -1], [1, 3, 10, 11, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
66 |
+
[[0, 1, 8, 10, 11, -1, -1], [4, 5, 9, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
67 |
+
[[0, 3, 4, 5, 10, 11, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
68 |
+
[[4, 5, 8, 10, 11, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
69 |
+
[[5, 7, 8, 9, -1, -1, -1], [1, 3, 10, 11, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
70 |
+
[[0, 1, 5, 7, 9, 10, 11], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
71 |
+
[[0, 3, 5, 7, 8, 10, 11], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
72 |
+
[[5, 7, 10, 11, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
73 |
+
[[6, 7, 11, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
74 |
+
[[0, 3, 8, -1, -1, -1, -1], [6, 7, 11, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
75 |
+
[[0, 1, 9, -1, -1, -1, -1], [6, 7, 11, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
76 |
+
[[1, 3, 8, 9, -1, -1, -1], [6, 7, 11, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
77 |
+
[[4, 6, 8, 11, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
78 |
+
[[0, 3, 4, 6, 11, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
79 |
+
[[0, 1, 9, -1, -1, -1, -1], [4, 6, 8, 11, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
80 |
+
[[1, 3, 4, 6, 9, 11, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
81 |
+
[[4, 5, 9, -1, -1, -1, -1], [6, 7, 11, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
82 |
+
[[0, 3, 8, -1, -1, -1, -1], [4, 5, 9, -1, -1, -1, -1], [6, 7, 11, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
83 |
+
[[0, 1, 4, 5, -1, -1, -1], [6, 7, 11, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
84 |
+
[[1, 3, 4, 5, 8, -1, -1], [6, 7, 11, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
85 |
+
[[5, 6, 8, 9, 11, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
86 |
+
[[0, 3, 5, 6, 9, 11, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
87 |
+
[[0, 1, 5, 6, 8, 11, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
88 |
+
[[1, 3, 5, 6, 11, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
89 |
+
[[2, 3, 6, 7, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
90 |
+
[[0, 2, 6, 7, 8, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
91 |
+
[[0, 1, 9, -1, -1, -1, -1], [2, 3, 6, 7, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
92 |
+
[[1, 2, 6, 7, 8, 9, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
93 |
+
[[2, 3, 4, 6, 8, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
94 |
+
[[0, 2, 4, 6, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
95 |
+
[[0, 1, 9, -1, -1, -1, -1], [2, 3, 4, 6, 8, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
96 |
+
[[1, 2, 4, 6, 9, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
97 |
+
[[4, 5, 9, -1, -1, -1, -1], [2, 3, 6, 7, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
98 |
+
[[0, 2, 6, 7, 8, -1, -1], [4, 5, 9, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
99 |
+
[[0, 1, 4, 5, -1, -1, -1], [2, 3, 6, 7, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
100 |
+
[[1, 2, 4, 5, 6, 7, 8], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
101 |
+
[[2, 3, 5, 6, 8, 9, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
102 |
+
[[0, 2, 5, 6, 9, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
103 |
+
[[0, 1, 2, 3, 5, 6, 8], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
104 |
+
[[1, 2, 5, 6, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
105 |
+
[[1, 2, 10, -1, -1, -1, -1], [6, 7, 11, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
106 |
+
[[0, 3, 8, -1, -1, -1, -1], [1, 2, 10, -1, -1, -1, -1], [6, 7, 11, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
107 |
+
[[0, 2, 9, 10, -1, -1, -1], [6, 7, 11, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
108 |
+
[[2, 3, 8, 9, 10, -1, -1], [6, 7, 11, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
109 |
+
[[4, 6, 8, 11, -1, -1, -1], [1, 2, 10, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
110 |
+
[[0, 3, 4, 6, 11, -1, -1], [1, 2, 10, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
111 |
+
[[0, 2, 9, 10, -1, -1, -1], [4, 6, 8, 11, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
112 |
+
[[2, 3, 4, 6, 9, 10, 11], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
113 |
+
[[4, 5, 9, -1, -1, -1, -1], [1, 2, 10, -1, -1, -1, -1], [6, 7, 11, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
114 |
+
[[0, 3, 8, -1, -1, -1, -1], [4, 5, 9, -1, -1, -1, -1], [1, 2, 10, -1, -1, -1, -1], [6, 7, 11, -1, -1, -1, -1]],
|
115 |
+
[[0, 2, 4, 5, 10, -1, -1], [6, 7, 11, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
116 |
+
[[2, 3, 4, 5, 8, 10, -1], [6, 7, 11, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
117 |
+
[[5, 6, 8, 9, 11, -1, -1], [1, 2, 10, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
118 |
+
[[0, 3, 5, 6, 9, 11, -1], [1, 2, 10, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
119 |
+
[[0, 2, 5, 6, 8, 10, 11], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
120 |
+
[[2, 3, 5, 6, 10, 11, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
121 |
+
[[1, 3, 6, 7, 10, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
122 |
+
[[0, 1, 6, 7, 8, 10, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
123 |
+
[[0, 3, 6, 7, 9, 10, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
124 |
+
[[6, 7, 8, 9, 10, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
125 |
+
[[1, 3, 4, 6, 8, 10, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
126 |
+
[[0, 1, 4, 6, 10, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
127 |
+
[[0, 3, 4, 6, 8, 9, 10], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
128 |
+
[[4, 6, 9, 10, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
129 |
+
[[4, 5, 9, -1, -1, -1, -1], [1, 3, 6, 7, 10, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
130 |
+
[[0, 1, 6, 7, 8, 10, -1], [4, 5, 9, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
131 |
+
[[0, 3, 4, 5, 6, 7, 10], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
132 |
+
[[4, 5, 6, 7, 8, 10, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
133 |
+
[[1, 3, 5, 6, 8, 9, 10], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
134 |
+
[[0, 1, 5, 6, 9, 10, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
135 |
+
[[0, 3, 8, -1, -1, -1, -1], [5, 6, 10, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
136 |
+
[[5, 6, 10, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
137 |
+
[[5, 6, 10, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
138 |
+
[[0, 3, 8, -1, -1, -1, -1], [5, 6, 10, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
139 |
+
[[0, 1, 9, -1, -1, -1, -1], [5, 6, 10, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
140 |
+
[[1, 3, 8, 9, -1, -1, -1], [5, 6, 10, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
141 |
+
[[4, 7, 8, -1, -1, -1, -1], [5, 6, 10, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
142 |
+
[[0, 3, 4, 7, -1, -1, -1], [5, 6, 10, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
143 |
+
[[0, 1, 9, -1, -1, -1, -1], [4, 7, 8, -1, -1, -1, -1], [5, 6, 10, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
144 |
+
[[1, 3, 4, 7, 9, -1, -1], [5, 6, 10, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
145 |
+
[[4, 6, 9, 10, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
146 |
+
[[0, 3, 8, -1, -1, -1, -1], [4, 6, 9, 10, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
147 |
+
[[0, 1, 4, 6, 10, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
148 |
+
[[1, 3, 4, 6, 8, 10, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
149 |
+
[[6, 7, 8, 9, 10, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
150 |
+
[[0, 3, 6, 7, 9, 10, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
151 |
+
[[0, 1, 6, 7, 8, 10, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
152 |
+
[[1, 3, 6, 7, 10, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
153 |
+
[[2, 3, 11, -1, -1, -1, -1], [5, 6, 10, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
154 |
+
[[0, 2, 8, 11, -1, -1, -1], [5, 6, 10, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
155 |
+
[[0, 1, 9, -1, -1, -1, -1], [2, 3, 11, -1, -1, -1, -1], [5, 6, 10, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
156 |
+
[[1, 2, 8, 9, 11, -1, -1], [5, 6, 10, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
157 |
+
[[4, 7, 8, -1, -1, -1, -1], [2, 3, 11, -1, -1, -1, -1], [5, 6, 10, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
158 |
+
[[0, 2, 4, 7, 11, -1, -1], [5, 6, 10, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
159 |
+
[[0, 1, 9, -1, -1, -1, -1], [4, 7, 8, -1, -1, -1, -1], [2, 3, 11, -1, -1, -1, -1], [5, 6, 10, -1, -1, -1, -1]],
|
160 |
+
[[1, 2, 4, 7, 9, 11, -1], [5, 6, 10, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
161 |
+
[[4, 6, 9, 10, -1, -1, -1], [2, 3, 11, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
162 |
+
[[0, 2, 8, 11, -1, -1, -1], [4, 6, 9, 10, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
163 |
+
[[0, 1, 4, 6, 10, -1, -1], [2, 3, 11, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
164 |
+
[[1, 2, 4, 6, 8, 10, 11], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
165 |
+
[[6, 7, 8, 9, 10, -1, -1], [2, 3, 11, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
166 |
+
[[0, 2, 6, 7, 9, 10, 11], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
167 |
+
[[0, 1, 6, 7, 8, 10, -1], [2, 3, 11, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
168 |
+
[[1, 2, 6, 7, 10, 11, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
169 |
+
[[1, 2, 5, 6, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
170 |
+
[[0, 3, 8, -1, -1, -1, -1], [1, 2, 5, 6, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
171 |
+
[[0, 2, 5, 6, 9, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
172 |
+
[[2, 3, 5, 6, 8, 9, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
173 |
+
[[4, 7, 8, -1, -1, -1, -1], [1, 2, 5, 6, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
174 |
+
[[0, 3, 4, 7, -1, -1, -1], [1, 2, 5, 6, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
175 |
+
[[0, 2, 5, 6, 9, -1, -1], [4, 7, 8, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
176 |
+
[[2, 3, 4, 5, 6, 7, 9], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
177 |
+
[[1, 2, 4, 6, 9, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
178 |
+
[[0, 3, 8, -1, -1, -1, -1], [1, 2, 4, 6, 9, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
179 |
+
[[0, 2, 4, 6, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
180 |
+
[[2, 3, 4, 6, 8, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
181 |
+
[[1, 2, 6, 7, 8, 9, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
182 |
+
[[0, 1, 2, 3, 6, 7, 9], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
183 |
+
[[0, 2, 6, 7, 8, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
184 |
+
[[2, 3, 6, 7, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
185 |
+
[[1, 3, 5, 6, 11, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
186 |
+
[[0, 1, 5, 6, 8, 11, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
187 |
+
[[0, 3, 5, 6, 9, 11, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
188 |
+
[[5, 6, 8, 9, 11, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
189 |
+
[[4, 7, 8, -1, -1, -1, -1], [1, 3, 5, 6, 11, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
190 |
+
[[0, 1, 4, 5, 6, 7, 11], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
191 |
+
[[0, 3, 5, 6, 9, 11, -1], [4, 7, 8, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
192 |
+
[[4, 5, 6, 7, 9, 11, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
193 |
+
[[1, 3, 4, 6, 9, 11, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
194 |
+
[[0, 1, 4, 6, 8, 9, 11], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
195 |
+
[[0, 3, 4, 6, 11, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
196 |
+
[[4, 6, 8, 11, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
197 |
+
[[1, 3, 6, 7, 8, 9, 11], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
198 |
+
[[0, 1, 9, -1, -1, -1, -1], [6, 7, 11, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
199 |
+
[[0, 3, 6, 7, 8, 11, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
200 |
+
[[6, 7, 11, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
201 |
+
[[5, 7, 10, 11, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
202 |
+
[[0, 3, 8, -1, -1, -1, -1], [5, 7, 10, 11, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
203 |
+
[[0, 1, 9, -1, -1, -1, -1], [5, 7, 10, 11, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
204 |
+
[[1, 3, 8, 9, -1, -1, -1], [5, 7, 10, 11, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
205 |
+
[[4, 5, 8, 10, 11, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
206 |
+
[[0, 3, 4, 5, 10, 11, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
207 |
+
[[0, 1, 9, -1, -1, -1, -1], [4, 5, 8, 10, 11, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
208 |
+
[[1, 3, 4, 5, 9, 10, 11], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
209 |
+
[[4, 7, 9, 10, 11, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
210 |
+
[[0, 3, 8, -1, -1, -1, -1], [4, 7, 9, 10, 11, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
211 |
+
[[0, 1, 4, 7, 10, 11, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
212 |
+
[[1, 3, 4, 7, 8, 10, 11], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
213 |
+
[[8, 9, 10, 11, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
214 |
+
[[0, 3, 9, 10, 11, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
215 |
+
[[0, 1, 8, 10, 11, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
216 |
+
[[1, 3, 10, 11, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
217 |
+
[[2, 3, 5, 7, 10, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
218 |
+
[[0, 2, 5, 7, 8, 10, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
219 |
+
[[0, 1, 9, -1, -1, -1, -1], [2, 3, 5, 7, 10, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
220 |
+
[[1, 2, 5, 7, 8, 9, 10], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
221 |
+
[[2, 3, 4, 5, 8, 10, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
222 |
+
[[0, 2, 4, 5, 10, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
223 |
+
[[0, 1, 9, -1, -1, -1, -1], [2, 3, 4, 5, 8, 10, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
224 |
+
[[1, 2, 4, 5, 9, 10, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
225 |
+
[[2, 3, 4, 7, 9, 10, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
226 |
+
[[0, 2, 4, 7, 8, 9, 10], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
227 |
+
[[0, 1, 2, 3, 4, 7, 10], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
228 |
+
[[4, 7, 8, -1, -1, -1, -1], [1, 2, 10, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
229 |
+
[[2, 3, 8, 9, 10, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
230 |
+
[[0, 2, 9, 10, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
231 |
+
[[0, 1, 2, 3, 8, 10, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
232 |
+
[[1, 2, 10, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
233 |
+
[[1, 2, 5, 7, 11, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
234 |
+
[[0, 3, 8, -1, -1, -1, -1], [1, 2, 5, 7, 11, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
235 |
+
[[0, 2, 5, 7, 9, 11, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
236 |
+
[[2, 3, 5, 7, 8, 9, 11], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
237 |
+
[[1, 2, 4, 5, 8, 11, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
238 |
+
[[0, 1, 2, 3, 4, 5, 11], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
239 |
+
[[0, 2, 4, 5, 8, 9, 11], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
240 |
+
[[4, 5, 9, -1, -1, -1, -1], [2, 3, 11, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
241 |
+
[[1, 2, 4, 7, 9, 11, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
242 |
+
[[0, 3, 8, -1, -1, -1, -1], [1, 2, 4, 7, 9, 11, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
243 |
+
[[0, 2, 4, 7, 11, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
244 |
+
[[2, 3, 4, 7, 8, 11, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
245 |
+
[[1, 2, 8, 9, 11, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
246 |
+
[[0, 1, 2, 3, 9, 11, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
247 |
+
[[0, 2, 8, 11, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
248 |
+
[[2, 3, 11, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
249 |
+
[[1, 3, 5, 7, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
250 |
+
[[0, 1, 5, 7, 8, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
251 |
+
[[0, 3, 5, 7, 9, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
252 |
+
[[5, 7, 8, 9, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
253 |
+
[[1, 3, 4, 5, 8, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
254 |
+
[[0, 1, 4, 5, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
255 |
+
[[0, 3, 4, 5, 8, 9, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
256 |
+
[[4, 5, 9, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
257 |
+
[[1, 3, 4, 7, 9, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
258 |
+
[[0, 1, 4, 7, 8, 9, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
259 |
+
[[0, 3, 4, 7, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
260 |
+
[[4, 7, 8, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
261 |
+
[[1, 3, 8, 9, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
262 |
+
[[0, 1, 9, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
263 |
+
[[0, 3, 8, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
|
264 |
+
[[-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]]
|
265 |
+
]
|
266 |
+
num_vd_table = [0, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 3, 1, 2, 2,
|
267 |
+
2, 1, 2, 1, 2, 1, 1, 2, 1, 1, 2, 2, 2, 1, 2, 3, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 2,
|
268 |
+
1, 2, 1, 2, 2, 1, 1, 2, 1, 1, 1, 1, 2, 2, 2, 1, 1, 2, 1, 2, 3, 2, 2, 1, 1, 1, 1,
|
269 |
+
1, 1, 2, 1, 1, 1, 2, 1, 2, 2, 2, 1, 1, 1, 1, 1, 2, 3, 2, 2, 2, 2, 2, 1, 3, 4, 2,
|
270 |
+
2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 1, 1, 2, 2, 2, 2, 2,
|
271 |
+
3, 2, 1, 2, 1, 1, 1, 1, 1, 1, 2, 2, 3, 2, 3, 2, 4, 2, 2, 2, 2, 1, 2, 1, 2, 1, 1,
|
272 |
+
2, 1, 1, 2, 2, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1,
|
273 |
+
1, 2, 1, 1, 1, 2, 2, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2,
|
274 |
+
1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1,
|
275 |
+
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0]
|
276 |
+
check_table = [
|
277 |
+
[0, 0, 0, 0, 0],
|
278 |
+
[0, 0, 0, 0, 0],
|
279 |
+
[0, 0, 0, 0, 0],
|
280 |
+
[0, 0, 0, 0, 0],
|
281 |
+
[0, 0, 0, 0, 0],
|
282 |
+
[0, 0, 0, 0, 0],
|
283 |
+
[0, 0, 0, 0, 0],
|
284 |
+
[0, 0, 0, 0, 0],
|
285 |
+
[0, 0, 0, 0, 0],
|
286 |
+
[0, 0, 0, 0, 0],
|
287 |
+
[0, 0, 0, 0, 0],
|
288 |
+
[0, 0, 0, 0, 0],
|
289 |
+
[0, 0, 0, 0, 0],
|
290 |
+
[0, 0, 0, 0, 0],
|
291 |
+
[0, 0, 0, 0, 0],
|
292 |
+
[0, 0, 0, 0, 0],
|
293 |
+
[0, 0, 0, 0, 0],
|
294 |
+
[0, 0, 0, 0, 0],
|
295 |
+
[0, 0, 0, 0, 0],
|
296 |
+
[0, 0, 0, 0, 0],
|
297 |
+
[0, 0, 0, 0, 0],
|
298 |
+
[0, 0, 0, 0, 0],
|
299 |
+
[0, 0, 0, 0, 0],
|
300 |
+
[0, 0, 0, 0, 0],
|
301 |
+
[0, 0, 0, 0, 0],
|
302 |
+
[0, 0, 0, 0, 0],
|
303 |
+
[0, 0, 0, 0, 0],
|
304 |
+
[0, 0, 0, 0, 0],
|
305 |
+
[0, 0, 0, 0, 0],
|
306 |
+
[0, 0, 0, 0, 0],
|
307 |
+
[0, 0, 0, 0, 0],
|
308 |
+
[0, 0, 0, 0, 0],
|
309 |
+
[0, 0, 0, 0, 0],
|
310 |
+
[0, 0, 0, 0, 0],
|
311 |
+
[0, 0, 0, 0, 0],
|
312 |
+
[0, 0, 0, 0, 0],
|
313 |
+
[0, 0, 0, 0, 0],
|
314 |
+
[0, 0, 0, 0, 0],
|
315 |
+
[0, 0, 0, 0, 0],
|
316 |
+
[0, 0, 0, 0, 0],
|
317 |
+
[0, 0, 0, 0, 0],
|
318 |
+
[0, 0, 0, 0, 0],
|
319 |
+
[0, 0, 0, 0, 0],
|
320 |
+
[0, 0, 0, 0, 0],
|
321 |
+
[0, 0, 0, 0, 0],
|
322 |
+
[0, 0, 0, 0, 0],
|
323 |
+
[0, 0, 0, 0, 0],
|
324 |
+
[0, 0, 0, 0, 0],
|
325 |
+
[0, 0, 0, 0, 0],
|
326 |
+
[0, 0, 0, 0, 0],
|
327 |
+
[0, 0, 0, 0, 0],
|
328 |
+
[0, 0, 0, 0, 0],
|
329 |
+
[0, 0, 0, 0, 0],
|
330 |
+
[0, 0, 0, 0, 0],
|
331 |
+
[0, 0, 0, 0, 0],
|
332 |
+
[0, 0, 0, 0, 0],
|
333 |
+
[0, 0, 0, 0, 0],
|
334 |
+
[0, 0, 0, 0, 0],
|
335 |
+
[0, 0, 0, 0, 0],
|
336 |
+
[0, 0, 0, 0, 0],
|
337 |
+
[0, 0, 0, 0, 0],
|
338 |
+
[1, 1, 0, 0, 194],
|
339 |
+
[1, -1, 0, 0, 193],
|
340 |
+
[0, 0, 0, 0, 0],
|
341 |
+
[0, 0, 0, 0, 0],
|
342 |
+
[0, 0, 0, 0, 0],
|
343 |
+
[0, 0, 0, 0, 0],
|
344 |
+
[0, 0, 0, 0, 0],
|
345 |
+
[0, 0, 0, 0, 0],
|
346 |
+
[0, 0, 0, 0, 0],
|
347 |
+
[0, 0, 0, 0, 0],
|
348 |
+
[0, 0, 0, 0, 0],
|
349 |
+
[0, 0, 0, 0, 0],
|
350 |
+
[0, 0, 0, 0, 0],
|
351 |
+
[0, 0, 0, 0, 0],
|
352 |
+
[0, 0, 0, 0, 0],
|
353 |
+
[0, 0, 0, 0, 0],
|
354 |
+
[0, 0, 0, 0, 0],
|
355 |
+
[0, 0, 0, 0, 0],
|
356 |
+
[0, 0, 0, 0, 0],
|
357 |
+
[0, 0, 0, 0, 0],
|
358 |
+
[0, 0, 0, 0, 0],
|
359 |
+
[0, 0, 0, 0, 0],
|
360 |
+
[0, 0, 0, 0, 0],
|
361 |
+
[0, 0, 0, 0, 0],
|
362 |
+
[0, 0, 0, 0, 0],
|
363 |
+
[0, 0, 0, 0, 0],
|
364 |
+
[0, 0, 0, 0, 0],
|
365 |
+
[0, 0, 0, 0, 0],
|
366 |
+
[0, 0, 0, 0, 0],
|
367 |
+
[0, 0, 0, 0, 0],
|
368 |
+
[1, 0, 1, 0, 164],
|
369 |
+
[0, 0, 0, 0, 0],
|
370 |
+
[0, 0, 0, 0, 0],
|
371 |
+
[1, 0, -1, 0, 161],
|
372 |
+
[0, 0, 0, 0, 0],
|
373 |
+
[0, 0, 0, 0, 0],
|
374 |
+
[0, 0, 0, 0, 0],
|
375 |
+
[0, 0, 0, 0, 0],
|
376 |
+
[0, 0, 0, 0, 0],
|
377 |
+
[0, 0, 0, 0, 0],
|
378 |
+
[0, 0, 0, 0, 0],
|
379 |
+
[0, 0, 0, 0, 0],
|
380 |
+
[1, 0, 0, 1, 152],
|
381 |
+
[0, 0, 0, 0, 0],
|
382 |
+
[0, 0, 0, 0, 0],
|
383 |
+
[0, 0, 0, 0, 0],
|
384 |
+
[0, 0, 0, 0, 0],
|
385 |
+
[0, 0, 0, 0, 0],
|
386 |
+
[0, 0, 0, 0, 0],
|
387 |
+
[1, 0, 0, 1, 145],
|
388 |
+
[1, 0, 0, 1, 144],
|
389 |
+
[0, 0, 0, 0, 0],
|
390 |
+
[0, 0, 0, 0, 0],
|
391 |
+
[0, 0, 0, 0, 0],
|
392 |
+
[0, 0, 0, 0, 0],
|
393 |
+
[0, 0, 0, 0, 0],
|
394 |
+
[0, 0, 0, 0, 0],
|
395 |
+
[1, 0, 0, -1, 137],
|
396 |
+
[0, 0, 0, 0, 0],
|
397 |
+
[0, 0, 0, 0, 0],
|
398 |
+
[0, 0, 0, 0, 0],
|
399 |
+
[1, 0, 1, 0, 133],
|
400 |
+
[1, 0, 1, 0, 132],
|
401 |
+
[1, 1, 0, 0, 131],
|
402 |
+
[1, 1, 0, 0, 130],
|
403 |
+
[0, 0, 0, 0, 0],
|
404 |
+
[0, 0, 0, 0, 0],
|
405 |
+
[0, 0, 0, 0, 0],
|
406 |
+
[0, 0, 0, 0, 0],
|
407 |
+
[0, 0, 0, 0, 0],
|
408 |
+
[0, 0, 0, 0, 0],
|
409 |
+
[0, 0, 0, 0, 0],
|
410 |
+
[0, 0, 0, 0, 0],
|
411 |
+
[0, 0, 0, 0, 0],
|
412 |
+
[0, 0, 0, 0, 0],
|
413 |
+
[0, 0, 0, 0, 0],
|
414 |
+
[0, 0, 0, 0, 0],
|
415 |
+
[0, 0, 0, 0, 0],
|
416 |
+
[0, 0, 0, 0, 0],
|
417 |
+
[0, 0, 0, 0, 0],
|
418 |
+
[0, 0, 0, 0, 0],
|
419 |
+
[0, 0, 0, 0, 0],
|
420 |
+
[0, 0, 0, 0, 0],
|
421 |
+
[0, 0, 0, 0, 0],
|
422 |
+
[0, 0, 0, 0, 0],
|
423 |
+
[0, 0, 0, 0, 0],
|
424 |
+
[0, 0, 0, 0, 0],
|
425 |
+
[0, 0, 0, 0, 0],
|
426 |
+
[0, 0, 0, 0, 0],
|
427 |
+
[0, 0, 0, 0, 0],
|
428 |
+
[0, 0, 0, 0, 0],
|
429 |
+
[0, 0, 0, 0, 0],
|
430 |
+
[0, 0, 0, 0, 0],
|
431 |
+
[0, 0, 0, 0, 0],
|
432 |
+
[1, 0, 0, 1, 100],
|
433 |
+
[0, 0, 0, 0, 0],
|
434 |
+
[1, 0, 0, 1, 98],
|
435 |
+
[0, 0, 0, 0, 0],
|
436 |
+
[1, 0, 0, 1, 96],
|
437 |
+
[0, 0, 0, 0, 0],
|
438 |
+
[0, 0, 0, 0, 0],
|
439 |
+
[0, 0, 0, 0, 0],
|
440 |
+
[0, 0, 0, 0, 0],
|
441 |
+
[0, 0, 0, 0, 0],
|
442 |
+
[0, 0, 0, 0, 0],
|
443 |
+
[0, 0, 0, 0, 0],
|
444 |
+
[1, 0, 1, 0, 88],
|
445 |
+
[0, 0, 0, 0, 0],
|
446 |
+
[0, 0, 0, 0, 0],
|
447 |
+
[0, 0, 0, 0, 0],
|
448 |
+
[0, 0, 0, 0, 0],
|
449 |
+
[0, 0, 0, 0, 0],
|
450 |
+
[1, 0, -1, 0, 82],
|
451 |
+
[0, 0, 0, 0, 0],
|
452 |
+
[0, 0, 0, 0, 0],
|
453 |
+
[0, 0, 0, 0, 0],
|
454 |
+
[0, 0, 0, 0, 0],
|
455 |
+
[0, 0, 0, 0, 0],
|
456 |
+
[0, 0, 0, 0, 0],
|
457 |
+
[0, 0, 0, 0, 0],
|
458 |
+
[1, 0, 1, 0, 74],
|
459 |
+
[0, 0, 0, 0, 0],
|
460 |
+
[1, 0, 1, 0, 72],
|
461 |
+
[0, 0, 0, 0, 0],
|
462 |
+
[1, 0, 0, -1, 70],
|
463 |
+
[0, 0, 0, 0, 0],
|
464 |
+
[0, 0, 0, 0, 0],
|
465 |
+
[1, -1, 0, 0, 67],
|
466 |
+
[0, 0, 0, 0, 0],
|
467 |
+
[1, -1, 0, 0, 65],
|
468 |
+
[0, 0, 0, 0, 0],
|
469 |
+
[0, 0, 0, 0, 0],
|
470 |
+
[0, 0, 0, 0, 0],
|
471 |
+
[0, 0, 0, 0, 0],
|
472 |
+
[0, 0, 0, 0, 0],
|
473 |
+
[0, 0, 0, 0, 0],
|
474 |
+
[0, 0, 0, 0, 0],
|
475 |
+
[0, 0, 0, 0, 0],
|
476 |
+
[1, 1, 0, 0, 56],
|
477 |
+
[0, 0, 0, 0, 0],
|
478 |
+
[0, 0, 0, 0, 0],
|
479 |
+
[0, 0, 0, 0, 0],
|
480 |
+
[1, -1, 0, 0, 52],
|
481 |
+
[0, 0, 0, 0, 0],
|
482 |
+
[0, 0, 0, 0, 0],
|
483 |
+
[0, 0, 0, 0, 0],
|
484 |
+
[0, 0, 0, 0, 0],
|
485 |
+
[0, 0, 0, 0, 0],
|
486 |
+
[0, 0, 0, 0, 0],
|
487 |
+
[0, 0, 0, 0, 0],
|
488 |
+
[1, 1, 0, 0, 44],
|
489 |
+
[0, 0, 0, 0, 0],
|
490 |
+
[0, 0, 0, 0, 0],
|
491 |
+
[0, 0, 0, 0, 0],
|
492 |
+
[1, 1, 0, 0, 40],
|
493 |
+
[0, 0, 0, 0, 0],
|
494 |
+
[1, 0, 0, -1, 38],
|
495 |
+
[1, 0, -1, 0, 37],
|
496 |
+
[0, 0, 0, 0, 0],
|
497 |
+
[0, 0, 0, 0, 0],
|
498 |
+
[0, 0, 0, 0, 0],
|
499 |
+
[1, 0, -1, 0, 33],
|
500 |
+
[0, 0, 0, 0, 0],
|
501 |
+
[0, 0, 0, 0, 0],
|
502 |
+
[0, 0, 0, 0, 0],
|
503 |
+
[0, 0, 0, 0, 0],
|
504 |
+
[1, -1, 0, 0, 28],
|
505 |
+
[0, 0, 0, 0, 0],
|
506 |
+
[1, 0, -1, 0, 26],
|
507 |
+
[1, 0, 0, -1, 25],
|
508 |
+
[0, 0, 0, 0, 0],
|
509 |
+
[0, 0, 0, 0, 0],
|
510 |
+
[0, 0, 0, 0, 0],
|
511 |
+
[0, 0, 0, 0, 0],
|
512 |
+
[1, -1, 0, 0, 20],
|
513 |
+
[0, 0, 0, 0, 0],
|
514 |
+
[1, 0, -1, 0, 18],
|
515 |
+
[0, 0, 0, 0, 0],
|
516 |
+
[0, 0, 0, 0, 0],
|
517 |
+
[0, 0, 0, 0, 0],
|
518 |
+
[0, 0, 0, 0, 0],
|
519 |
+
[0, 0, 0, 0, 0],
|
520 |
+
[0, 0, 0, 0, 0],
|
521 |
+
[0, 0, 0, 0, 0],
|
522 |
+
[0, 0, 0, 0, 0],
|
523 |
+
[1, 0, 0, -1, 9],
|
524 |
+
[0, 0, 0, 0, 0],
|
525 |
+
[0, 0, 0, 0, 0],
|
526 |
+
[1, 0, 0, -1, 6],
|
527 |
+
[0, 0, 0, 0, 0],
|
528 |
+
[0, 0, 0, 0, 0],
|
529 |
+
[0, 0, 0, 0, 0],
|
530 |
+
[0, 0, 0, 0, 0],
|
531 |
+
[0, 0, 0, 0, 0],
|
532 |
+
[0, 0, 0, 0, 0]
|
533 |
+
]
|
534 |
+
tet_table = [
|
535 |
+
[-1, -1, -1, -1, -1, -1],
|
536 |
+
[0, 0, 0, 0, 0, 0],
|
537 |
+
[0, 0, 0, 0, 0, 0],
|
538 |
+
[1, 1, 1, 1, 1, 1],
|
539 |
+
[4, 4, 4, 4, 4, 4],
|
540 |
+
[0, 0, 0, 0, 0, 0],
|
541 |
+
[4, 0, 0, 4, 4, -1],
|
542 |
+
[1, 1, 1, 1, 1, 1],
|
543 |
+
[4, 4, 4, 4, 4, 4],
|
544 |
+
[0, 4, 0, 4, 4, -1],
|
545 |
+
[0, 0, 0, 0, 0, 0],
|
546 |
+
[1, 1, 1, 1, 1, 1],
|
547 |
+
[5, 5, 5, 5, 5, 5],
|
548 |
+
[0, 0, 0, 0, 0, 0],
|
549 |
+
[0, 0, 0, 0, 0, 0],
|
550 |
+
[1, 1, 1, 1, 1, 1],
|
551 |
+
[2, 2, 2, 2, 2, 2],
|
552 |
+
[0, 0, 0, 0, 0, 0],
|
553 |
+
[2, 0, 2, -1, 0, 2],
|
554 |
+
[1, 1, 1, 1, 1, 1],
|
555 |
+
[2, -1, 2, 4, 4, 2],
|
556 |
+
[0, 0, 0, 0, 0, 0],
|
557 |
+
[2, 0, 2, 4, 4, 2],
|
558 |
+
[1, 1, 1, 1, 1, 1],
|
559 |
+
[2, 4, 2, 4, 4, 2],
|
560 |
+
[0, 4, 0, 4, 4, 0],
|
561 |
+
[2, 0, 2, 0, 0, 2],
|
562 |
+
[1, 1, 1, 1, 1, 1],
|
563 |
+
[2, 5, 2, 5, 5, 2],
|
564 |
+
[0, 0, 0, 0, 0, 0],
|
565 |
+
[2, 0, 2, 0, 0, 2],
|
566 |
+
[1, 1, 1, 1, 1, 1],
|
567 |
+
[1, 1, 1, 1, 1, 1],
|
568 |
+
[0, 1, 1, -1, 0, 1],
|
569 |
+
[0, 0, 0, 0, 0, 0],
|
570 |
+
[2, 2, 2, 2, 2, 2],
|
571 |
+
[4, 1, 1, 4, 4, 1],
|
572 |
+
[0, 1, 1, 0, 0, 1],
|
573 |
+
[4, 0, 0, 4, 4, 0],
|
574 |
+
[2, 2, 2, 2, 2, 2],
|
575 |
+
[-1, 1, 1, 4, 4, 1],
|
576 |
+
[0, 1, 1, 4, 4, 1],
|
577 |
+
[0, 0, 0, 0, 0, 0],
|
578 |
+
[2, 2, 2, 2, 2, 2],
|
579 |
+
[5, 1, 1, 5, 5, 1],
|
580 |
+
[0, 1, 1, 0, 0, 1],
|
581 |
+
[0, 0, 0, 0, 0, 0],
|
582 |
+
[2, 2, 2, 2, 2, 2],
|
583 |
+
[1, 1, 1, 1, 1, 1],
|
584 |
+
[0, 0, 0, 0, 0, 0],
|
585 |
+
[0, 0, 0, 0, 0, 0],
|
586 |
+
[8, 8, 8, 8, 8, 8],
|
587 |
+
[1, 1, 1, 4, 4, 1],
|
588 |
+
[0, 0, 0, 0, 0, 0],
|
589 |
+
[4, 0, 0, 4, 4, 0],
|
590 |
+
[4, 4, 4, 4, 4, 4],
|
591 |
+
[1, 1, 1, 4, 4, 1],
|
592 |
+
[0, 4, 0, 4, 4, 0],
|
593 |
+
[0, 0, 0, 0, 0, 0],
|
594 |
+
[4, 4, 4, 4, 4, 4],
|
595 |
+
[1, 1, 1, 5, 5, 1],
|
596 |
+
[0, 0, 0, 0, 0, 0],
|
597 |
+
[0, 0, 0, 0, 0, 0],
|
598 |
+
[5, 5, 5, 5, 5, 5],
|
599 |
+
[6, 6, 6, 6, 6, 6],
|
600 |
+
[6, -1, 0, 6, 0, 6],
|
601 |
+
[6, 0, 0, 6, 0, 6],
|
602 |
+
[6, 1, 1, 6, 1, 6],
|
603 |
+
[4, 4, 4, 4, 4, 4],
|
604 |
+
[0, 0, 0, 0, 0, 0],
|
605 |
+
[4, 0, 0, 4, 4, 4],
|
606 |
+
[1, 1, 1, 1, 1, 1],
|
607 |
+
[6, 4, -1, 6, 4, 6],
|
608 |
+
[6, 4, 0, 6, 4, 6],
|
609 |
+
[6, 0, 0, 6, 0, 6],
|
610 |
+
[6, 1, 1, 6, 1, 6],
|
611 |
+
[5, 5, 5, 5, 5, 5],
|
612 |
+
[0, 0, 0, 0, 0, 0],
|
613 |
+
[0, 0, 0, 0, 0, 0],
|
614 |
+
[1, 1, 1, 1, 1, 1],
|
615 |
+
[2, 2, 2, 2, 2, 2],
|
616 |
+
[0, 0, 0, 0, 0, 0],
|
617 |
+
[2, 0, 2, 2, 0, 2],
|
618 |
+
[1, 1, 1, 1, 1, 1],
|
619 |
+
[2, 2, 2, 2, 2, 2],
|
620 |
+
[0, 0, 0, 0, 0, 0],
|
621 |
+
[2, 0, 2, 2, 2, 2],
|
622 |
+
[1, 1, 1, 1, 1, 1],
|
623 |
+
[2, 4, 2, 2, 4, 2],
|
624 |
+
[0, 4, 0, 4, 4, 0],
|
625 |
+
[2, 0, 2, 2, 0, 2],
|
626 |
+
[1, 1, 1, 1, 1, 1],
|
627 |
+
[2, 2, 2, 2, 2, 2],
|
628 |
+
[0, 0, 0, 0, 0, 0],
|
629 |
+
[0, 0, 0, 0, 0, 0],
|
630 |
+
[1, 1, 1, 1, 1, 1],
|
631 |
+
[6, 1, 1, 6, -1, 6],
|
632 |
+
[6, 1, 1, 6, 0, 6],
|
633 |
+
[6, 0, 0, 6, 0, 6],
|
634 |
+
[6, 2, 2, 6, 2, 6],
|
635 |
+
[4, 1, 1, 4, 4, 1],
|
636 |
+
[0, 1, 1, 0, 0, 1],
|
637 |
+
[4, 0, 0, 4, 4, 4],
|
638 |
+
[2, 2, 2, 2, 2, 2],
|
639 |
+
[6, 1, 1, 6, 4, 6],
|
640 |
+
[6, 1, 1, 6, 4, 6],
|
641 |
+
[6, 0, 0, 6, 0, 6],
|
642 |
+
[6, 2, 2, 6, 2, 6],
|
643 |
+
[5, 1, 1, 5, 5, 1],
|
644 |
+
[0, 1, 1, 0, 0, 1],
|
645 |
+
[0, 0, 0, 0, 0, 0],
|
646 |
+
[2, 2, 2, 2, 2, 2],
|
647 |
+
[1, 1, 1, 1, 1, 1],
|
648 |
+
[0, 0, 0, 0, 0, 0],
|
649 |
+
[0, 0, 0, 0, 0, 0],
|
650 |
+
[6, 6, 6, 6, 6, 6],
|
651 |
+
[1, 1, 1, 1, 1, 1],
|
652 |
+
[0, 0, 0, 0, 0, 0],
|
653 |
+
[0, 0, 0, 0, 0, 0],
|
654 |
+
[4, 4, 4, 4, 4, 4],
|
655 |
+
[1, 1, 1, 1, 4, 1],
|
656 |
+
[0, 4, 0, 4, 4, 0],
|
657 |
+
[0, 0, 0, 0, 0, 0],
|
658 |
+
[4, 4, 4, 4, 4, 4],
|
659 |
+
[1, 1, 1, 1, 1, 1],
|
660 |
+
[0, 0, 0, 0, 0, 0],
|
661 |
+
[0, 5, 0, 5, 0, 5],
|
662 |
+
[5, 5, 5, 5, 5, 5],
|
663 |
+
[5, 5, 5, 5, 5, 5],
|
664 |
+
[0, 5, 0, 5, 0, 5],
|
665 |
+
[-1, 5, 0, 5, 0, 5],
|
666 |
+
[1, 5, 1, 5, 1, 5],
|
667 |
+
[4, 5, -1, 5, 4, 5],
|
668 |
+
[0, 5, 0, 5, 0, 5],
|
669 |
+
[4, 5, 0, 5, 4, 5],
|
670 |
+
[1, 5, 1, 5, 1, 5],
|
671 |
+
[4, 4, 4, 4, 4, 4],
|
672 |
+
[0, 4, 0, 4, 4, 4],
|
673 |
+
[0, 0, 0, 0, 0, 0],
|
674 |
+
[1, 1, 1, 1, 1, 1],
|
675 |
+
[6, 6, 6, 6, 6, 6],
|
676 |
+
[0, 0, 0, 0, 0, 0],
|
677 |
+
[0, 0, 0, 0, 0, 0],
|
678 |
+
[1, 1, 1, 1, 1, 1],
|
679 |
+
[2, 5, 2, 5, -1, 5],
|
680 |
+
[0, 5, 0, 5, 0, 5],
|
681 |
+
[2, 5, 2, 5, 0, 5],
|
682 |
+
[1, 5, 1, 5, 1, 5],
|
683 |
+
[2, 5, 2, 5, 4, 5],
|
684 |
+
[0, 5, 0, 5, 0, 5],
|
685 |
+
[2, 5, 2, 5, 4, 5],
|
686 |
+
[1, 5, 1, 5, 1, 5],
|
687 |
+
[2, 4, 2, 4, 4, 2],
|
688 |
+
[0, 4, 0, 4, 4, 4],
|
689 |
+
[2, 0, 2, 0, 0, 2],
|
690 |
+
[1, 1, 1, 1, 1, 1],
|
691 |
+
[2, 6, 2, 6, 6, 2],
|
692 |
+
[0, 0, 0, 0, 0, 0],
|
693 |
+
[2, 0, 2, 0, 0, 2],
|
694 |
+
[1, 1, 1, 1, 1, 1],
|
695 |
+
[1, 1, 1, 1, 1, 1],
|
696 |
+
[0, 1, 1, 1, 0, 1],
|
697 |
+
[0, 0, 0, 0, 0, 0],
|
698 |
+
[2, 2, 2, 2, 2, 2],
|
699 |
+
[4, 1, 1, 1, 4, 1],
|
700 |
+
[0, 1, 1, 1, 0, 1],
|
701 |
+
[4, 0, 0, 4, 4, 0],
|
702 |
+
[2, 2, 2, 2, 2, 2],
|
703 |
+
[1, 1, 1, 1, 1, 1],
|
704 |
+
[0, 1, 1, 1, 1, 1],
|
705 |
+
[0, 0, 0, 0, 0, 0],
|
706 |
+
[2, 2, 2, 2, 2, 2],
|
707 |
+
[1, 1, 1, 1, 1, 1],
|
708 |
+
[0, 0, 0, 0, 0, 0],
|
709 |
+
[0, 0, 0, 0, 0, 0],
|
710 |
+
[2, 2, 2, 2, 2, 2],
|
711 |
+
[1, 1, 1, 1, 1, 1],
|
712 |
+
[0, 0, 0, 0, 0, 0],
|
713 |
+
[0, 0, 0, 0, 0, 0],
|
714 |
+
[5, 5, 5, 5, 5, 5],
|
715 |
+
[1, 1, 1, 1, 4, 1],
|
716 |
+
[0, 0, 0, 0, 0, 0],
|
717 |
+
[4, 0, 0, 4, 4, 0],
|
718 |
+
[4, 4, 4, 4, 4, 4],
|
719 |
+
[1, 1, 1, 1, 1, 1],
|
720 |
+
[0, 0, 0, 0, 0, 0],
|
721 |
+
[0, 0, 0, 0, 0, 0],
|
722 |
+
[4, 4, 4, 4, 4, 4],
|
723 |
+
[1, 1, 1, 1, 1, 1],
|
724 |
+
[6, 0, 0, 6, 0, 6],
|
725 |
+
[0, 0, 0, 0, 0, 0],
|
726 |
+
[6, 6, 6, 6, 6, 6],
|
727 |
+
[5, 5, 5, 5, 5, 5],
|
728 |
+
[5, 5, 0, 5, 0, 5],
|
729 |
+
[5, 5, 0, 5, 0, 5],
|
730 |
+
[5, 5, 1, 5, 1, 5],
|
731 |
+
[4, 4, 4, 4, 4, 4],
|
732 |
+
[0, 0, 0, 0, 0, 0],
|
733 |
+
[4, 4, 0, 4, 4, 4],
|
734 |
+
[1, 1, 1, 1, 1, 1],
|
735 |
+
[4, 4, 4, 4, 4, 4],
|
736 |
+
[4, 4, 0, 4, 4, 4],
|
737 |
+
[0, 0, 0, 0, 0, 0],
|
738 |
+
[1, 1, 1, 1, 1, 1],
|
739 |
+
[8, 8, 8, 8, 8, 8],
|
740 |
+
[0, 0, 0, 0, 0, 0],
|
741 |
+
[0, 0, 0, 0, 0, 0],
|
742 |
+
[1, 1, 1, 1, 1, 1],
|
743 |
+
[2, 2, 2, 2, 2, 2],
|
744 |
+
[0, 0, 0, 0, 0, 0],
|
745 |
+
[2, 2, 2, 2, 0, 2],
|
746 |
+
[1, 1, 1, 1, 1, 1],
|
747 |
+
[2, 2, 2, 2, 2, 2],
|
748 |
+
[0, 0, 0, 0, 0, 0],
|
749 |
+
[2, 2, 2, 2, 2, 2],
|
750 |
+
[1, 1, 1, 1, 1, 1],
|
751 |
+
[2, 2, 2, 2, 2, 2],
|
752 |
+
[0, 0, 0, 0, 0, 0],
|
753 |
+
[0, 0, 0, 0, 0, 0],
|
754 |
+
[4, 1, 1, 4, 4, 1],
|
755 |
+
[2, 2, 2, 2, 2, 2],
|
756 |
+
[0, 0, 0, 0, 0, 0],
|
757 |
+
[0, 0, 0, 0, 0, 0],
|
758 |
+
[1, 1, 1, 1, 1, 1],
|
759 |
+
[1, 1, 1, 1, 1, 1],
|
760 |
+
[1, 1, 1, 1, 0, 1],
|
761 |
+
[0, 0, 0, 0, 0, 0],
|
762 |
+
[2, 2, 2, 2, 2, 2],
|
763 |
+
[1, 1, 1, 1, 1, 1],
|
764 |
+
[0, 0, 0, 0, 0, 0],
|
765 |
+
[0, 0, 0, 0, 0, 0],
|
766 |
+
[2, 4, 2, 4, 4, 2],
|
767 |
+
[1, 1, 1, 1, 1, 1],
|
768 |
+
[1, 1, 1, 1, 1, 1],
|
769 |
+
[0, 0, 0, 0, 0, 0],
|
770 |
+
[2, 2, 2, 2, 2, 2],
|
771 |
+
[1, 1, 1, 1, 1, 1],
|
772 |
+
[0, 0, 0, 0, 0, 0],
|
773 |
+
[0, 0, 0, 0, 0, 0],
|
774 |
+
[2, 2, 2, 2, 2, 2],
|
775 |
+
[1, 1, 1, 1, 1, 1],
|
776 |
+
[0, 0, 0, 0, 0, 0],
|
777 |
+
[0, 0, 0, 0, 0, 0],
|
778 |
+
[5, 5, 5, 5, 5, 5],
|
779 |
+
[1, 1, 1, 1, 1, 1],
|
780 |
+
[0, 0, 0, 0, 0, 0],
|
781 |
+
[0, 0, 0, 0, 0, 0],
|
782 |
+
[4, 4, 4, 4, 4, 4],
|
783 |
+
[1, 1, 1, 1, 1, 1],
|
784 |
+
[0, 0, 0, 0, 0, 0],
|
785 |
+
[0, 0, 0, 0, 0, 0],
|
786 |
+
[4, 4, 4, 4, 4, 4],
|
787 |
+
[1, 1, 1, 1, 1, 1],
|
788 |
+
[0, 0, 0, 0, 0, 0],
|
789 |
+
[0, 0, 0, 0, 0, 0],
|
790 |
+
[12, 12, 12, 12, 12, 12]
|
791 |
+
]
|
apps/third_party/CRM/util/utils.py
ADDED
@@ -0,0 +1,194 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import torch
|
3 |
+
import random
|
4 |
+
|
5 |
+
|
6 |
+
# Reworked so this matches gluPerspective / glm::perspective, using fovy
|
7 |
+
def perspective(fovx=0.7854, aspect=1.0, n=0.1, f=1000.0, device=None):
|
8 |
+
# y = np.tan(fovy / 2)
|
9 |
+
x = np.tan(fovx / 2)
|
10 |
+
return torch.tensor([[1/x, 0, 0, 0],
|
11 |
+
[ 0, -aspect/x, 0, 0],
|
12 |
+
[ 0, 0, -(f+n)/(f-n), -(2*f*n)/(f-n)],
|
13 |
+
[ 0, 0, -1, 0]], dtype=torch.float32, device=device)
|
14 |
+
|
15 |
+
|
16 |
+
def translate(x, y, z, device=None):
|
17 |
+
return torch.tensor([[1, 0, 0, x],
|
18 |
+
[0, 1, 0, y],
|
19 |
+
[0, 0, 1, z],
|
20 |
+
[0, 0, 0, 1]], dtype=torch.float32, device=device)
|
21 |
+
|
22 |
+
|
23 |
+
def rotate_x(a, device=None):
|
24 |
+
s, c = np.sin(a), np.cos(a)
|
25 |
+
return torch.tensor([[1, 0, 0, 0],
|
26 |
+
[0, c, -s, 0],
|
27 |
+
[0, s, c, 0],
|
28 |
+
[0, 0, 0, 1]], dtype=torch.float32, device=device)
|
29 |
+
|
30 |
+
|
31 |
+
def rotate_y(a, device=None):
|
32 |
+
s, c = np.sin(a), np.cos(a)
|
33 |
+
return torch.tensor([[ c, 0, s, 0],
|
34 |
+
[ 0, 1, 0, 0],
|
35 |
+
[-s, 0, c, 0],
|
36 |
+
[ 0, 0, 0, 1]], dtype=torch.float32, device=device)
|
37 |
+
|
38 |
+
|
39 |
+
def rotate_z(a, device=None):
|
40 |
+
s, c = np.sin(a), np.cos(a)
|
41 |
+
return torch.tensor([[c, -s, 0, 0],
|
42 |
+
[s, c, 0, 0],
|
43 |
+
[0, 0, 1, 0],
|
44 |
+
[0, 0, 0, 1]], dtype=torch.float32, device=device)
|
45 |
+
|
46 |
+
@torch.no_grad()
|
47 |
+
def batch_random_rotation_translation(b, t, device=None):
|
48 |
+
m = np.random.normal(size=[b, 3, 3])
|
49 |
+
m[:, 1] = np.cross(m[:, 0], m[:, 2])
|
50 |
+
m[:, 2] = np.cross(m[:, 0], m[:, 1])
|
51 |
+
m = m / np.linalg.norm(m, axis=2, keepdims=True)
|
52 |
+
m = np.pad(m, [[0, 0], [0, 1], [0, 1]], mode='constant')
|
53 |
+
m[:, 3, 3] = 1.0
|
54 |
+
m[:, :3, 3] = np.random.uniform(-t, t, size=[b, 3])
|
55 |
+
return torch.tensor(m, dtype=torch.float32, device=device)
|
56 |
+
|
57 |
+
@torch.no_grad()
|
58 |
+
def random_rotation_translation(t, device=None):
|
59 |
+
m = np.random.normal(size=[3, 3])
|
60 |
+
m[1] = np.cross(m[0], m[2])
|
61 |
+
m[2] = np.cross(m[0], m[1])
|
62 |
+
m = m / np.linalg.norm(m, axis=1, keepdims=True)
|
63 |
+
m = np.pad(m, [[0, 1], [0, 1]], mode='constant')
|
64 |
+
m[3, 3] = 1.0
|
65 |
+
m[:3, 3] = np.random.uniform(-t, t, size=[3])
|
66 |
+
return torch.tensor(m, dtype=torch.float32, device=device)
|
67 |
+
|
68 |
+
|
69 |
+
@torch.no_grad()
|
70 |
+
def random_rotation(device=None):
|
71 |
+
m = np.random.normal(size=[3, 3])
|
72 |
+
m[1] = np.cross(m[0], m[2])
|
73 |
+
m[2] = np.cross(m[0], m[1])
|
74 |
+
m = m / np.linalg.norm(m, axis=1, keepdims=True)
|
75 |
+
m = np.pad(m, [[0, 1], [0, 1]], mode='constant')
|
76 |
+
m[3, 3] = 1.0
|
77 |
+
m[:3, 3] = np.array([0,0,0]).astype(np.float32)
|
78 |
+
return torch.tensor(m, dtype=torch.float32, device=device)
|
79 |
+
|
80 |
+
|
81 |
+
def dot(x: torch.Tensor, y: torch.Tensor) -> torch.Tensor:
|
82 |
+
return torch.sum(x*y, -1, keepdim=True)
|
83 |
+
|
84 |
+
|
85 |
+
def length(x: torch.Tensor, eps: float =1e-20) -> torch.Tensor:
|
86 |
+
return torch.sqrt(torch.clamp(dot(x,x), min=eps)) # Clamp to avoid nan gradients because grad(sqrt(0)) = NaN
|
87 |
+
|
88 |
+
|
89 |
+
def safe_normalize(x: torch.Tensor, eps: float =1e-20) -> torch.Tensor:
|
90 |
+
return x / length(x, eps)
|
91 |
+
|
92 |
+
|
93 |
+
def lr_schedule(iter, warmup_iter, scheduler_decay):
|
94 |
+
if iter < warmup_iter:
|
95 |
+
return iter / warmup_iter
|
96 |
+
return max(0.0, 10 ** (
|
97 |
+
-(iter - warmup_iter) * scheduler_decay))
|
98 |
+
|
99 |
+
|
100 |
+
def trans_depth(depth):
|
101 |
+
depth = depth[0].detach().cpu().numpy()
|
102 |
+
valid = depth > 0
|
103 |
+
depth[valid] -= depth[valid].min()
|
104 |
+
depth[valid] = ((depth[valid] / depth[valid].max()) * 255)
|
105 |
+
return depth.astype('uint8')
|
106 |
+
|
107 |
+
|
108 |
+
def nan_to_num(input, nan=0.0, posinf=None, neginf=None, *, out=None):
|
109 |
+
assert isinstance(input, torch.Tensor)
|
110 |
+
if posinf is None:
|
111 |
+
posinf = torch.finfo(input.dtype).max
|
112 |
+
if neginf is None:
|
113 |
+
neginf = torch.finfo(input.dtype).min
|
114 |
+
assert nan == 0
|
115 |
+
return torch.clamp(input.unsqueeze(0).nansum(0), min=neginf, max=posinf, out=out)
|
116 |
+
|
117 |
+
|
118 |
+
def load_item(filepath):
|
119 |
+
with open(filepath, 'r') as f:
|
120 |
+
items = [name.strip() for name in f.readlines()]
|
121 |
+
return set(items)
|
122 |
+
|
123 |
+
def load_prompt(filepath):
|
124 |
+
uuid2prompt = {}
|
125 |
+
with open(filepath, 'r') as f:
|
126 |
+
for line in f.readlines():
|
127 |
+
list_line = line.split(',')
|
128 |
+
uuid2prompt[list_line[0]] = ','.join(list_line[1:]).strip()
|
129 |
+
return uuid2prompt
|
130 |
+
|
131 |
+
def resize_and_center_image(image_tensor, scale=0.95, c = 0, shift = 0, rgb=False, aug_shift = 0):
|
132 |
+
if scale == 1:
|
133 |
+
return image_tensor
|
134 |
+
B, C, H, W = image_tensor.shape
|
135 |
+
new_H, new_W = int(H * scale), int(W * scale)
|
136 |
+
resized_image = torch.nn.functional.interpolate(image_tensor, size=(new_H, new_W), mode='bilinear', align_corners=False).squeeze(0)
|
137 |
+
background = torch.zeros_like(image_tensor) + c
|
138 |
+
start_y, start_x = (H - new_H) // 2, (W - new_W) // 2
|
139 |
+
if shift == 0:
|
140 |
+
background[:, :, start_y:start_y + new_H, start_x:start_x + new_W] = resized_image
|
141 |
+
else:
|
142 |
+
for i in range(B):
|
143 |
+
randx = random.randint(-shift, shift)
|
144 |
+
randy = random.randint(-shift, shift)
|
145 |
+
if rgb == True:
|
146 |
+
if i == 0 or i==2 or i==4:
|
147 |
+
randx = 0
|
148 |
+
randy = 0
|
149 |
+
background[i, :, start_y+randy:start_y + new_H+randy, start_x+randx:start_x + new_W+randx] = resized_image[i]
|
150 |
+
if aug_shift == 0:
|
151 |
+
return background
|
152 |
+
for i in range(B):
|
153 |
+
for j in range(C):
|
154 |
+
background[i, j, :, :] += (random.random() - 0.5)*2 * aug_shift / 255
|
155 |
+
return background
|
156 |
+
|
157 |
+
def get_tri(triview_color, dim = 1, blender=True, c = 0, scale=0.95, shift = 0, fix = False, rgb=False, aug_shift = 0):
|
158 |
+
# triview_color: [6,C,H,W]
|
159 |
+
# rgb is useful when shift is not 0
|
160 |
+
triview_color = resize_and_center_image(triview_color, scale=scale, c = c, shift=shift,rgb=rgb, aug_shift = aug_shift)
|
161 |
+
if blender is False:
|
162 |
+
triview_color0 = torch.rot90(triview_color[0],k=2,dims=[1,2])
|
163 |
+
triview_color1 = torch.rot90(triview_color[4],k=1,dims=[1,2]).flip(2).flip(1)
|
164 |
+
triview_color2 = torch.rot90(triview_color[5],k=1,dims=[1,2]).flip(2)
|
165 |
+
triview_color3 = torch.rot90(triview_color[3],k=2,dims=[1,2]).flip(2)
|
166 |
+
triview_color4 = torch.rot90(triview_color[1],k=3,dims=[1,2]).flip(1)
|
167 |
+
triview_color5 = torch.rot90(triview_color[2],k=3,dims=[1,2]).flip(1).flip(2)
|
168 |
+
else:
|
169 |
+
triview_color0 = torch.rot90(triview_color[2],k=2,dims=[1,2])
|
170 |
+
triview_color1 = torch.rot90(triview_color[4],k=0,dims=[1,2]).flip(2).flip(1)
|
171 |
+
triview_color2 = torch.rot90(torch.rot90(triview_color[0],k=3,dims=[1,2]).flip(2), k=2,dims=[1,2])
|
172 |
+
triview_color3 = torch.rot90(torch.rot90(triview_color[5],k=2,dims=[1,2]).flip(2), k=2,dims=[1,2])
|
173 |
+
triview_color4 = torch.rot90(triview_color[1],k=2,dims=[1,2]).flip(1).flip(1).flip(2)
|
174 |
+
triview_color5 = torch.rot90(triview_color[3],k=1,dims=[1,2]).flip(1).flip(2)
|
175 |
+
if fix == True:
|
176 |
+
triview_color0[1] = triview_color0[1] * 0
|
177 |
+
triview_color0[2] = triview_color0[2] * 0
|
178 |
+
triview_color3[1] = triview_color3[1] * 0
|
179 |
+
triview_color3[2] = triview_color3[2] * 0
|
180 |
+
|
181 |
+
triview_color1[0] = triview_color1[0] * 0
|
182 |
+
triview_color1[1] = triview_color1[1] * 0
|
183 |
+
triview_color4[0] = triview_color4[0] * 0
|
184 |
+
triview_color4[1] = triview_color4[1] * 0
|
185 |
+
|
186 |
+
triview_color2[0] = triview_color2[0] * 0
|
187 |
+
triview_color2[2] = triview_color2[2] * 0
|
188 |
+
triview_color5[0] = triview_color5[0] * 0
|
189 |
+
triview_color5[2] = triview_color5[2] * 0
|
190 |
+
color_tensor1_gt = torch.cat((triview_color0, triview_color1, triview_color2), dim=2)
|
191 |
+
color_tensor2_gt = torch.cat((triview_color3, triview_color4, triview_color5), dim=2)
|
192 |
+
color_tensor_gt = torch.cat((color_tensor1_gt, color_tensor2_gt), dim = dim)
|
193 |
+
return color_tensor_gt
|
194 |
+
|