File size: 1,748 Bytes
4fc75fa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 |
import torch
import torch.nn as nn
import nvdiffrast.torch as dr
from util.flexicubes_geometry import FlexiCubesGeometry
class Renderer(nn.Module):
def __init__(self, tet_grid_size, camera_angle_num, scale, geo_type):
super().__init__()
self.tet_grid_size = tet_grid_size
self.camera_angle_num = camera_angle_num
self.scale = scale
self.geo_type = geo_type
self.glctx = dr.RasterizeCudaContext()
if self.geo_type == "flex":
self.flexicubes = FlexiCubesGeometry(grid_res = self.tet_grid_size)
def forward(self, data, sdf, deform, verts, tets, training=False, weight = None):
results = {}
deform = torch.tanh(deform) / self.tet_grid_size * self.scale / 0.95
if self.geo_type == "flex":
deform = deform *0.5
v_deformed = verts + deform
verts_list = []
faces_list = []
reg_list = []
n_shape = verts.shape[0]
for i in range(n_shape):
verts_i, faces_i, reg_i = self.flexicubes.get_mesh(v_deformed[i], sdf[i].squeeze(dim=-1),
with_uv=False, indices=tets, weight_n=weight[i], is_training=training)
verts_list.append(verts_i)
faces_list.append(faces_i)
reg_list.append(reg_i)
verts = verts_list
faces = faces_list
flexicubes_surface_reg = torch.cat(reg_list).mean()
flexicubes_weight_reg = (weight ** 2).mean()
results["flex_surf_loss"] = flexicubes_surface_reg
results["flex_weight_loss"] = flexicubes_weight_reg
return results, verts, faces |