|
import numpy as np
|
|
import torch
|
|
from imagedream.camera_utils import get_camera_for_index
|
|
from imagedream.ldm.util import set_seed, add_random_background
|
|
|
|
|
|
|
|
|
|
from apps.third_party.CRM.libs.base_utils import do_resize_content
|
|
from imagedream.ldm.models.diffusion.ddim import DDIMSampler
|
|
from torchvision import transforms as T
|
|
|
|
|
|
class ImageDreamDiffusion:
|
|
def __init__(
|
|
self,
|
|
model,
|
|
device,
|
|
dtype,
|
|
mode,
|
|
num_frames,
|
|
camera_views,
|
|
ref_position,
|
|
random_background=False,
|
|
offset_noise=False,
|
|
resize_rate=1,
|
|
image_size=256,
|
|
seed=1234,
|
|
) -> None:
|
|
assert mode in ["pixel", "local"]
|
|
size = image_size
|
|
self.seed = seed
|
|
batch_size = max(4, num_frames)
|
|
|
|
neg_texts = "uniform low no texture ugly, boring, bad anatomy, blurry, pixelated, obscure, unnatural colors, poor lighting, dull, and unclear."
|
|
uc = model.get_learned_conditioning([neg_texts]).to(device)
|
|
sampler = DDIMSampler(model)
|
|
|
|
|
|
camera = [get_camera_for_index(i).squeeze() for i in camera_views]
|
|
camera[ref_position] = torch.zeros_like(camera[ref_position])
|
|
camera = torch.stack(camera)
|
|
camera = camera.repeat(batch_size // num_frames, 1).to(device)
|
|
|
|
self.image_transform = T.Compose(
|
|
[
|
|
T.Resize((size, size)),
|
|
T.ToTensor(),
|
|
T.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
|
|
]
|
|
)
|
|
self.dtype = dtype
|
|
self.ref_position = ref_position
|
|
self.mode = mode
|
|
self.random_background = random_background
|
|
self.resize_rate = resize_rate
|
|
self.num_frames = num_frames
|
|
self.size = size
|
|
self.device = device
|
|
self.batch_size = batch_size
|
|
self.model = model
|
|
self.sampler = sampler
|
|
self.uc = uc
|
|
self.camera = camera
|
|
self.offset_noise = offset_noise
|
|
|
|
@staticmethod
|
|
def i2i(
|
|
model,
|
|
image_size,
|
|
prompt,
|
|
uc,
|
|
sampler,
|
|
ip=None,
|
|
step=20,
|
|
scale=5.0,
|
|
batch_size=8,
|
|
ddim_eta=0.0,
|
|
dtype=torch.float32,
|
|
device="cuda",
|
|
camera=None,
|
|
num_frames=4,
|
|
pixel_control=False,
|
|
transform=None,
|
|
offset_noise=False,
|
|
):
|
|
""" The function supports additional image prompt.
|
|
Args:
|
|
model (_type_): the image dream model
|
|
image_size (_type_): size of diffusion output (standard 256)
|
|
prompt (_type_): text prompt for the image (prompt in type str)
|
|
uc (_type_): unconditional vector (tensor in shape [1, 77, 1024])
|
|
sampler (_type_): imagedream.ldm.models.diffusion.ddim.DDIMSampler
|
|
ip (Image, optional): the image prompt. Defaults to None.
|
|
step (int, optional): _description_. Defaults to 20.
|
|
scale (float, optional): _description_. Defaults to 7.5.
|
|
batch_size (int, optional): _description_. Defaults to 8.
|
|
ddim_eta (float, optional): _description_. Defaults to 0.0.
|
|
dtype (_type_, optional): _description_. Defaults to torch.float32.
|
|
device (str, optional): _description_. Defaults to "cuda".
|
|
camera (_type_, optional): camera info in tensor, shape: torch.Size([5, 16]) mean: 0.11, std: 0.49, min: -1.00, max: 1.00
|
|
num_frames (int, optional): _num of frames (views) to generate
|
|
pixel_control: whether to use pixel conditioning. Defaults to False, True when using pixel mode
|
|
transform: Compose(
|
|
Resize(size=(256, 256), interpolation=bilinear, max_size=None, antialias=warn)
|
|
ToTensor()
|
|
Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5))
|
|
)
|
|
"""
|
|
ip_raw = ip
|
|
if type(prompt) != list:
|
|
prompt = [prompt]
|
|
with torch.no_grad(), torch.autocast(device_type=torch.device(device).type, dtype=dtype):
|
|
c = model.get_learned_conditioning(prompt).to(
|
|
device
|
|
)
|
|
c_ = {"context": c.repeat(batch_size, 1, 1)}
|
|
uc_ = {"context": uc.repeat(batch_size, 1, 1)}
|
|
|
|
if camera is not None:
|
|
c_["camera"] = uc_["camera"] = (
|
|
camera
|
|
)
|
|
c_["num_frames"] = uc_["num_frames"] = num_frames
|
|
|
|
if ip is not None:
|
|
ip_embed = model.get_learned_image_conditioning(ip).to(
|
|
device
|
|
)
|
|
ip_ = ip_embed.repeat(batch_size, 1, 1)
|
|
c_["ip"] = ip_
|
|
uc_["ip"] = torch.zeros_like(ip_)
|
|
|
|
if pixel_control:
|
|
assert camera is not None
|
|
ip = transform(ip).to(
|
|
device
|
|
)
|
|
ip_img = model.get_first_stage_encoding(
|
|
model.encode_first_stage(ip[None, :, :, :])
|
|
)
|
|
c_["ip_img"] = ip_img
|
|
uc_["ip_img"] = torch.zeros_like(ip_img)
|
|
|
|
shape = [4, image_size // 8, image_size // 8]
|
|
if offset_noise:
|
|
ref = transform(ip_raw).to(device)
|
|
ref_latent = model.get_first_stage_encoding(model.encode_first_stage(ref[None, :, :, :]))
|
|
ref_mean = ref_latent.mean(dim=(-1, -2), keepdim=True)
|
|
time_steps = torch.randint(model.num_timesteps - 1, model.num_timesteps, (batch_size,), device=device)
|
|
x_T = model.q_sample(torch.ones([batch_size] + shape, device=device) * ref_mean, time_steps)
|
|
|
|
samples_ddim, _ = (
|
|
sampler.sample(
|
|
S=step,
|
|
conditioning=c_,
|
|
batch_size=batch_size,
|
|
shape=shape,
|
|
verbose=False,
|
|
unconditional_guidance_scale=scale,
|
|
unconditional_conditioning=uc_,
|
|
eta=ddim_eta,
|
|
x_T=x_T if offset_noise else None,
|
|
)
|
|
)
|
|
|
|
x_sample = model.decode_first_stage(samples_ddim)
|
|
x_sample = torch.clamp((x_sample + 1.0) / 2.0, min=0.0, max=1.0)
|
|
x_sample = 255.0 * x_sample.permute(0, 2, 3, 1).cpu().numpy()
|
|
|
|
return list(x_sample.astype(np.uint8))
|
|
|
|
def diffuse(self, t, ip, n_test=2):
|
|
set_seed(self.seed)
|
|
ip = do_resize_content(ip, self.resize_rate)
|
|
if self.random_background:
|
|
ip = add_random_background(ip)
|
|
|
|
images = []
|
|
for _ in range(n_test):
|
|
img = self.i2i(
|
|
self.model,
|
|
self.size,
|
|
t,
|
|
self.uc,
|
|
self.sampler,
|
|
ip=ip,
|
|
step=50,
|
|
scale=5,
|
|
batch_size=self.batch_size,
|
|
ddim_eta=0.0,
|
|
dtype=self.dtype,
|
|
device=self.device,
|
|
camera=self.camera,
|
|
num_frames=self.num_frames,
|
|
pixel_control=(self.mode == "pixel"),
|
|
transform=self.image_transform,
|
|
offset_noise=self.offset_noise,
|
|
)
|
|
img = np.concatenate(img, 1)
|
|
img = np.concatenate((img, ip.resize((self.size, self.size))), axis=1)
|
|
images.append(img)
|
|
set_seed()
|
|
return images
|
|
|
|
|
|
class ImageDreamDiffusionStage2:
|
|
def __init__(
|
|
self,
|
|
model,
|
|
device,
|
|
dtype,
|
|
num_frames,
|
|
camera_views,
|
|
ref_position,
|
|
random_background=False,
|
|
offset_noise=False,
|
|
resize_rate=1,
|
|
mode="pixel",
|
|
image_size=256,
|
|
seed=1234,
|
|
) -> None:
|
|
assert mode in ["pixel", "local"]
|
|
|
|
size = image_size
|
|
self.seed = seed
|
|
batch_size = max(4, num_frames)
|
|
|
|
neg_texts = "uniform low no texture ugly, boring, bad anatomy, blurry, pixelated, obscure, unnatural colors, poor lighting, dull, and unclear."
|
|
uc = model.get_learned_conditioning([neg_texts]).to(device)
|
|
sampler = DDIMSampler(model)
|
|
|
|
|
|
camera = [get_camera_for_index(i).squeeze() for i in camera_views]
|
|
if ref_position is not None:
|
|
camera[ref_position] = torch.zeros_like(camera[ref_position])
|
|
camera = torch.stack(camera)
|
|
camera = camera.repeat(batch_size // num_frames, 1).to(device)
|
|
|
|
self.image_transform = T.Compose(
|
|
[
|
|
T.Resize((size, size)),
|
|
T.ToTensor(),
|
|
T.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
|
|
]
|
|
)
|
|
|
|
self.dtype = dtype
|
|
self.mode = mode
|
|
self.ref_position = ref_position
|
|
self.random_background = random_background
|
|
self.resize_rate = resize_rate
|
|
self.num_frames = num_frames
|
|
self.size = size
|
|
self.device = device
|
|
self.batch_size = batch_size
|
|
self.model = model
|
|
self.sampler = sampler
|
|
self.uc = uc
|
|
self.camera = camera
|
|
self.offset_noise = offset_noise
|
|
|
|
@staticmethod
|
|
def i2iStage2(
|
|
model,
|
|
image_size,
|
|
prompt,
|
|
uc,
|
|
sampler,
|
|
pixel_images,
|
|
ip=None,
|
|
step=20,
|
|
scale=5.0,
|
|
batch_size=8,
|
|
ddim_eta=0.0,
|
|
dtype=torch.float32,
|
|
device="cuda",
|
|
camera=None,
|
|
num_frames=4,
|
|
pixel_control=False,
|
|
transform=None,
|
|
offset_noise=False,
|
|
):
|
|
ip_raw = ip
|
|
if type(prompt) != list:
|
|
prompt = [prompt]
|
|
with torch.no_grad(), torch.autocast(device_type=torch.device(device).type, dtype=dtype):
|
|
c = model.get_learned_conditioning(prompt).to(
|
|
device
|
|
)
|
|
c_ = {"context": c.repeat(batch_size, 1, 1)}
|
|
uc_ = {"context": uc.repeat(batch_size, 1, 1)}
|
|
|
|
if camera is not None:
|
|
c_["camera"] = uc_["camera"] = (
|
|
camera
|
|
)
|
|
c_["num_frames"] = uc_["num_frames"] = num_frames
|
|
|
|
if ip is not None:
|
|
ip_embed = model.get_learned_image_conditioning(ip).to(
|
|
device
|
|
)
|
|
ip_ = ip_embed.repeat(batch_size, 1, 1)
|
|
c_["ip"] = ip_
|
|
uc_["ip"] = torch.zeros_like(ip_)
|
|
|
|
if pixel_control:
|
|
assert camera is not None
|
|
|
|
transed_pixel_images = torch.stack([transform(i).to(device) for i in pixel_images])
|
|
latent_pixel_images = model.get_first_stage_encoding(model.encode_first_stage(transed_pixel_images))
|
|
|
|
c_["pixel_images"] = latent_pixel_images
|
|
uc_["pixel_images"] = torch.zeros_like(latent_pixel_images)
|
|
|
|
shape = [4, image_size // 8, image_size // 8]
|
|
if offset_noise:
|
|
ref = transform(ip_raw).to(device)
|
|
ref_latent = model.get_first_stage_encoding(model.encode_first_stage(ref[None, :, :, :]))
|
|
ref_mean = ref_latent.mean(dim=(-1, -2), keepdim=True)
|
|
time_steps = torch.randint(model.num_timesteps - 1, model.num_timesteps, (batch_size,), device=device)
|
|
x_T = model.q_sample(torch.ones([batch_size] + shape, device=device) * ref_mean, time_steps)
|
|
|
|
samples_ddim, _ = (
|
|
sampler.sample(
|
|
S=step,
|
|
conditioning=c_,
|
|
batch_size=batch_size,
|
|
shape=shape,
|
|
verbose=False,
|
|
unconditional_guidance_scale=scale,
|
|
unconditional_conditioning=uc_,
|
|
eta=ddim_eta,
|
|
x_T=x_T if offset_noise else None,
|
|
)
|
|
)
|
|
x_sample = model.decode_first_stage(samples_ddim)
|
|
x_sample = torch.clamp((x_sample + 1.0) / 2.0, min=0.0, max=1.0)
|
|
x_sample = 255.0 * x_sample.permute(0, 2, 3, 1).cpu().numpy()
|
|
|
|
return list(x_sample.astype(np.uint8))
|
|
|
|
@torch.no_grad()
|
|
def diffuse(self, t, ip, pixel_images, n_test=2):
|
|
set_seed(self.seed)
|
|
ip = do_resize_content(ip, self.resize_rate)
|
|
pixel_images = [do_resize_content(i, self.resize_rate) for i in pixel_images]
|
|
|
|
if self.random_background:
|
|
bg_color = np.random.rand() * 255
|
|
ip = add_random_background(ip, bg_color)
|
|
pixel_images = [add_random_background(i, bg_color) for i in pixel_images]
|
|
|
|
images = []
|
|
for _ in range(n_test):
|
|
img = self.i2iStage2(
|
|
self.model,
|
|
self.size,
|
|
t,
|
|
self.uc,
|
|
self.sampler,
|
|
pixel_images=pixel_images,
|
|
ip=ip,
|
|
step=50,
|
|
scale=5,
|
|
batch_size=self.batch_size,
|
|
ddim_eta=0.0,
|
|
dtype=self.dtype,
|
|
device=self.device,
|
|
camera=self.camera,
|
|
num_frames=self.num_frames,
|
|
pixel_control=(self.mode == "pixel"),
|
|
transform=self.image_transform,
|
|
offset_noise=self.offset_noise,
|
|
)
|
|
img = np.concatenate(img, 1)
|
|
img = np.concatenate(
|
|
(img, ip.resize((self.size, self.size)), *[i.resize((self.size, self.size)) for i in pixel_images]),
|
|
axis=1,
|
|
)
|
|
images.append(img)
|
|
set_seed()
|
|
return images
|
|
|